Gas-Liquid Flow in a Vertical Pipe Equipped with a Double Helical Swirl Separator Element

  • Ryan Anugrah Putra Department of Mechanical & Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada
  • Akhlisa Nadiantya Aji Nugroho Iniversitas Gadjah Mada
  • Aditya Ramadhona Universitas Gadjah Mada
  • Erick Wisnu Kuncoro Baroto Universitas Gadjah Mada
Keywords: Swirl separator, CFD, Gas-liquid, Rotating flow, Inline separator

Abstract

Two different gas-liquid flow behavior downstream a double helical swirl element inside a vertical pipe was observed in our preliminary experiment. The present Computational Fluid Dynamics (CFD) study confirms that the dynamics of gas-liquid flows inside the swirl separator is highly influenced by the liquid superficial velocity. The separation behavior in this work at a liquid superficial velocity of 0.1 m/s was the worst both axially and radially since the gas core cannot be sustained up to the outlet. The separation condition was improved by the increase of the liquid superficial velocity. The best separation condition in this study was achieved at the liquid superficial velocity of 1.0 m/s where the dense gas core can be maintained up to the outlet.

Downloads

Download data is not yet available.

References

N. Yıldırım, F. Kocabaş, and S. C. Gülcan, “Flow-Boundary Effects on Critical Submergence of Intake Pipe,” J. Hydraul. Eng., vol. 126, no. 4, pp. 288–297, Apr. 2000, doi: 10.1061/(ASCE)0733-9429(2000)126:4(288).

rob schook and V. van Asperen, “Compact separation by means of inline technology,” in SPE-93232-MS, Kingdom of Bahrain, Jan. 2005, p. 7, doi: 10.2118/93232-MS.

X. Luo, L. Yang, H. Yin, L. He, and Y. Lü, “A review of vortex tools toward liquid unloading for the oil and gas industry,” Chem. Eng. Process. - Process Intensif., vol. 145, p. 107679, Nov. 2019, doi: 10.1016/j.cep.2019.107679.

R. A. Putra, T. Schäfer, M. Neumann, and D. Lucas, “CFD studies on the gas-liquid flow in the swirl generating device,” Nucl. Eng. Des., vol. 332, pp. 213–225, Jun. 2018, doi: 10.1016/j.nucengdes.2018.03.034.

T. Matsubayashi, K. Katono, K. Hayashi, and A. Tomiyama, “Effects of swirler shape on swirling annular flow in a gas–liquid separator,” Nucl. Eng. Des., vol. 249, pp. 63–70, Aug. 2012, doi: 10.1016/j.nucengdes.2011.05.036.

H. Funahashi, K. Hayashi, S. Hosokawa, and A. Tomiyama, “Study on two-phase swirling flows in a gas–liquid separator with three pick-off rings,” Nucl. Eng. Des., vol. 308, pp. 205–213, Nov. 2016, doi: 10.1016/j.nucengdes.2016.08.030.

J. Yin, Y. Ma, Y. Qian, and D. Wang, “Experimental investigation of the bubble separation route for an axial gas–liquid separator for TMSR,” Ann. Nucl. Energy, vol. 97, pp. 1–6, Nov. 2016, doi: 10.1016/j.anucene.2016.06.018.

B. Cai, J. Wang, L. Sun, N. Zhang, and C. Yan, “Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR,” Prog. Nucl. Energy, vol. 74, pp. 1–13, Jul. 2014, doi: 10.1016/j.pnucene.2014.02.007.

R. A. Putra, M. Neumann-Kipping, T. Schäfer, and D. Lucas, “Comparison of Gas–Liquid Flow Characteristics in Geometrically Different Swirl Generating Devices,” Energies, vol. 12, no. 24, 2019, doi: 10.3390/en12244653.

S. Rabha, M. Schubert, F. Grugel, M. Banowski, and U. Hampel, “Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas–liquid flow,” Chem. Eng. J., vol. 262, pp. 527–540, Feb. 2015, doi: 10.1016/j.cej.2014.09.019.

R. A. Putra and A. N. A. Nugroho, “Numerical Simulation of the Gas-Liquid Flow Inside a Horizontal Static Mixer,” J. Inotera, vol. 5, no. 2, Art. no. 2, Jul. 2020, doi: 10.31572/inotera.Vol5.Iss2.2020.ID104.

ANSYS, “ANSYS CFX-Solver Theory Guide, Release 19.2.” 2019.

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.

Y. Sato and K. Sekoguchi, “Liquid velocity distribution in two-phase bubble flow,” Int. J. Multiph. Flow, vol. 2, no. 1, pp. 79–95, Jun. 1975, doi: 10.1016/0301-9322(75)90030-0.

M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, Sep. 1979, doi: 10.1002/aic.690250513.

A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa, “Transverse migration of single bubbles in simple shear flows,” Chem. Eng. Sci., vol. 57, no. 11, pp. 1849–1858, Jun. 2002, doi: 10.1016/S0009-2509(02)00085-4.

S. P. Antal, R. T. Lahey, and J. E. Flaherty, “Analysis of phase distribution in fully developed laminar bubbly two-phase flow,” Int. J. Multiph. Flow, vol. 17, no. 5, pp. 635–652, Sep. 1991, doi: 10.1016/0301-9322(91)90029-3.

A. D. Burns, T. Frank, I. Hamill, and J.-M. Shi, “The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows,” 5th Int. Conf. Multiph. Flow ICMF-2004 Yokohama Jpn., 2004.

T. R. Auton, J. C. R. Hunt, and M. Prud’Homme, “The force exerted on a body in inviscid unsteady non-uniform rotational flow,” J. Fluid Mech., vol. 197, pp. 241–257, 1988, doi: 10.1017/S0022112088003246.

J. Magnaudet, M. Rivero, and J. Fabre, “Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow,” J. Fluid Mech., vol. 284, pp. 97–135, 1995, doi: 10.1017/S0022112095000280.

M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids, vol. 26, no. 4, pp. 883–889, Apr. 1983, doi: 10.1063/1.864230.

R. A. Putra, “Mixing Characteristics of Gas-Liquid Flow in a Static Mixer: A Numerical Study,” Angkasa J. Ilm. Bid. Teknol., no. Submitted, 2020.

Published
2020-08-09
How to Cite
[1]
Ryan Anugrah Putra, A. N. Aji Nugroho, A. Ramadhona, and E. W. K. Baroto, “Gas-Liquid Flow in a Vertical Pipe Equipped with a Double Helical Swirl Separator Element”, JI, vol. 5, no. 2, pp. 92-99, Aug. 2020.