# Numerical Simulation of the Gas-Liquid Flow Inside a Horizontal Static Mixer

### Abstract

The gas-liquid flow inside a horizontal static mixer was numerically investigated by using Euler-Euler Computational Fluid Dynamics (CFD) simulations. The results confirm that the liquid superficial velocity plays a significant role on the mixing behavior of the gas and liquid. The mixing behavior in this present study at a liquid superficial velocity of 0.2 m/s was the worst both axially and radially. Increasing the liquid superficial velocity significantly improve the mixing between gas and liquid. However, the unwanted gas layer still can be found at the superficial liquid velocity less than 0.8 m/s. A good mixing behavior in this study was achieved at a relatively high velocity (i.e. larger than 0.8 m/s).

### Downloads

### References

B. Gjevik, H. Moe, and A. Ommundsen, “Sources of the Maelstrom,” Nature, vol. 388, no. 6645, pp. 837–838, Aug. 1997, doi: 10.1038/42159.

P. R. N. Childs, “Chapter 1 - Introduction to Rotating Flow,” in Rotating Flow, P. R. N. Childs, Ed. Oxford: Butterworth-Heinemann, 2011, pp. 1–15.

M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices,” Renew. Sustain. Energy Rev., vol. 49, pp. 444–469, Sep. 2015, doi: 10.1016/j.rser.2015.04.113.

O. Musa, C. Xiong, and Z. Changsheng, “Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet,” Acta Astronaut., vol. 139, pp. 1–17, Oct. 2017, doi: 10.1016/j.actaastro.2017.06.023.

X. Luo, L. Yang, H. Yin, L. He, and Y. Lü, “A review of vortex tools toward liquid unloading for the oil and gas industry,” Chem. Eng. Process. - Process Intensif., vol. 145, p. 107679, Nov. 2019, doi: 10.1016/j.cep.2019.107679.

S. Rabha, M. Schubert, F. Grugel, M. Banowski, and U. Hampel, “Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas–liquid flow,” Chem. Eng. J., vol. 262, pp. 527–540, Feb. 2015, doi: 10.1016/j.cej.2014.09.019.

R. A. Putra, M. Neumann-Kipping, T. Schäfer, and D. Lucas, “Comparison of Gas–Liquid Flow Characteristics in Geometrically Different Swirl Generating Devices,” Energies, vol. 12, no. 24, 2019, doi: 10.3390/en12244653.

R. A. Putra, T. Schäfer, M. Neumann, and D. Lucas, “CFD studies on the gas-liquid flow in the swirl generating device,” Nucl. Eng. Des., vol. 332, pp. 213–225, Jun. 2018, doi: 10.1016/j.nucengdes.2018.03.034.

F. Zidouni, E. Krepper, R. Rzehak, S. Rabha, M. Schubert, and U. Hampel, “Simulation of gas–liquid flow in a helical static mixer,” Chem. Eng. Sci., vol. 137, pp. 476–486, Dec. 2015, doi: 10.1016/j.ces.2015.06.052.

R. A. Putra, “Mixing Characteristics of Gas-Liquid Flow in a Static Mixer: A Numerical Study,” Angkasa J. Ilm. Bid. Teknol., no. Submitted, 2020.

J. Yin, Y. Ma, Y. Qian, and D. Wang, “Experimental investigation of the bubble separation route for an axial gas–liquid separator for TMSR,” Ann. Nucl. Energy, vol. 97, pp. 1–6, Nov. 2016, doi: 10.1016/j.anucene.2016.06.018.

ANSYS, “ANSYS CFX-Solver Theory Guide, Release 19.2.” 2019.

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.

Y. Sato and K. Sekoguchi, “Liquid velocity distribution in two-phase bubble flow,” Int. J. Multiph. Flow, vol. 2, no. 1, pp. 79–95, Jun. 1975, doi: 10.1016/0301-9322(75)90030-0.

M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, Sep. 1979, doi: 10.1002/aic.690250513.

A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa, “Transverse migration of single bubbles in simple shear flows,” Chem. Eng. Sci., vol. 57, no. 11, pp. 1849–1858, Jun. 2002, doi: 10.1016/S0009-2509(02)00085-4.

S. P. Antal, R. T. Lahey, and J. E. Flaherty, “Analysis of phase distribution in fully developed laminar bubbly two-phase flow,” Int. J. Multiph. Flow, vol. 17, no. 5, pp. 635–652, Sep. 1991, doi: 10.1016/0301-9322(91)90029-3.

A. D. Burns, T. Frank, I. Hamill, and J.-M. Shi, “The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows,” 5th Int. Conf. Multiph. Flow ICMF-2004 Yokohama Jpn., 2004.

T. R. Auton, J. C. R. Hunt, and M. Prud’Homme, “The force exerted on a body in inviscid unsteady non-uniform rotational flow,” J. Fluid Mech., vol. 197, pp. 241–257, 1988, doi: 10.1017/S0022112088003246.

J. Magnaudet, M. Rivero, and J. Fabre, “Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow,” J. Fluid Mech., vol. 284, pp. 97–135, 1995, doi: 10.1017/S0022112095000280.

M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids, vol. 26, no. 4, pp. 883–889, Apr. 1983, doi: 10.1063/1.864230.

*JI*, vol. 5, no. 2, pp. 73-79, Jul. 2020.