Providing Aquaponics Facility to the Kali Code Area of Yogyakarta to Support Food Availability for the Local Community
Abstract
The community service program in the form of providing aquaponics facilities in the Kali Code area of Yogyakarta was implemented to support food availability in the community during the COVID 19 pandemic. This aquaponics facility is also expected to contribute to the development of the Kali Code region as an ecotourism area and an example of sustainable riverbank management. The water source used for the facility comes from the outlet of a wastewater treatment system that treats wastewater from several food stalls around the site. This is very beneficial in terms of conserving clean water resources as this aquaponics facility does not require a separate clean water supply. Several phases carried out in this program include the design, manufacture, and installation of aquaponics facilities. This program is also a means for students to explore ideas and use the skills they acquire during their studies to solve problems faced by the community. An example of how the program contributes to feeding the community is produced fish and vegetables are being used to support the consumption of the river school’s closing event at that location.
Downloads
References
V. Ondruška, B. S. How, M. Netolický, V. Máša, and S. Y. Teng, “Resource optimisation in aquaponics facility via process monitoring and graph-theoretical approach,” Carbon Resour. Convers., Apr. 2022, doi: 10.1016/j.crcon.2022.04.003.
K. Roy, L. Kajgrova, and J. Mraz, “TILAFeed: A bio-based inventory for circular nutrients management and achieving bioeconomy in future aquaponics,” New Biotechnol., vol. 70, pp. 9–18, Sep. 2022, doi: 10.1016/j.nbt.2022.04.002.
A. Spradlin and S. Saha, “Saline aquaponics: A review of challenges, opportunities, components, and system design,” Aquaculture, vol. 555, p. 738173, Jun. 2022, doi: 10.1016/j.aquaculture.2022.738173.
S. Carlos-Hernández and L. Díaz-Jiménez, “Strategy based on life cycle assessment for telemetric monitoring of an aquaponics system,” Ind. Crops Prod., vol. 185, p. 115171, Oct. 2022, doi: 10.1016/j.indcrop.2022.115171.
T. Gjedrem, N. Robinson, and M. Rye, “The importance of selective breeding in aquaculture to meet future demands for animal protein: A review,” Aquaculture, vol. 350–353, pp. 117–129, Jun. 2012, doi: 10.1016/j.aquaculture.2012.04.008.
P. J. G. Henriksson et al., “Indonesian aquaculture futures – Evaluating environmental and socioeconomic potentials and limitations,” J. Clean. Prod., vol. 162, pp. 1482–1490, Sep. 2017, doi: 10.1016/j.jclepro.2017.06.133.
N. Tran et al., “Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model,” Mar. Policy, vol. 79, pp. 25–32, May 2017, doi: 10.1016/j.marpol.2017.02.002.
W. Wee et al., “The effects of mixed prebiotics in aquaculture: A review,” Aquac. Fish., Mar. 2022, doi: 10.1016/j.aaf.2022.02.005.
B. M. Inderaja, N. B. Tarigan, M. C. J. Verdegem, and K. J. Keesman, “Observability-based sensor selection in fish ponds: Application to pond aquaculture in Indonesia,” Aquac. Eng., vol. 98, p. 102258, Aug. 2022, doi: 10.1016/j.aquaeng.2022.102258.
K. Yue and Y. Shen, “An overview of disruptive technologies for aquaculture,” Aquac. Fish., vol. 7, no. 2, pp. 111–120, Mar. 2022, doi: 10.1016/j.aaf.2021.04.009.
T. Garlock et al., “Aquaculture: The missing contributor in the food security agenda,” Glob. Food Secur., vol. 32, p. 100620, Mar. 2022, doi: 10.1016/j.gfs.2022.100620.
A. Shepon et al., “Exploring sustainable aquaculture development using a nutrition-sensitive approach,” Glob. Environ. Change, vol. 69, p. 102285, Jul. 2021, doi: 10.1016/j.gloenvcha.2021.102285.
BALITBANGKES, “Laporan Nasional RISKESDAS 2018,” Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan, Jakarta, 2019.
J. Colt and K. Semmens, “Computation of feed conversion ratio (FCRplant) and plant-fish mass ratio (PFRM) for aquaponic systems,” Aquac. Eng., vol. 98, p. 102260, Aug. 2022, doi: 10.1016/j.aquaeng.2022.102260.
N. Zappernick et al., “Techno-economic analysis of a recirculating tilapia-lettuce aquaponics system,” J. Clean. Prod., vol. 365, p. 132753, Sep. 2022, doi: 10.1016/j.jclepro.2022.132753.
J. Zhang, G. Jia, M. Wang, S. Cao, and S. G. Mkumbuzi, “Hydrodynamics of recirculating aquaculture tanks with different spatial utilization,” Aquac. Eng., vol. 96, p. 102217, Feb. 2022, doi: 10.1016/j.aquaeng.2021.102217.
B. Kralik, F. Weisstein, J. Meyer, K. Neves, D. Anderson, and J. Kershaw, “From water to table: A multidisciplinary approach comparing fish from aquaponics with traditional production methods,” Aquaculture, vol. 552, p. 737953, Apr. 2022, doi: 10.1016/j.aquaculture.2022.737953.
L. H. David et al., “Sustainability of urban aquaponics farms: An emergy point of view,” J. Clean. Prod., vol. 331, p. 129896, Jan. 2022, doi: 10.1016/j.jclepro.2021.129896.
F. Bordignon, E. Sturaro, A. Trocino, M. Birolo, G. Xiccato, and M. Berton, “Comparative life cycle assessment of rainbow trout (Oncorhynchus mykiss) farming at two stocking densities in a low-tech aquaponic system,” Aquaculture, vol. 556, p. 738264, Jul. 2022, doi: 10.1016/j.aquaculture.2022.738264.
B. Yep and Y. Zheng, “Aquaponic trends and challenges – A review,” J. Clean. Prod., vol. 228, pp. 1586–1599, Aug. 2019, doi: 10.1016/j.jclepro.2019.04.290.
W. Brontowiyono, R. Lupiyanto, and D. Wijaya, “Pengelolaan Kawasan Sungai Code Berbasis Masyarakat,” J. Sains Teknol. Lingkung., vol. 2, no. 1, Art. no. 1, 2010, doi: 10.20885/jstl.vol2.iss1.art2.