Ocean Tides Model in Eastern Indonesian Sea Using Data Assimilation from Altimetry, Tide Gauge, and Hydrodynamic Model

  • Misfallah Nurhayati Institut Teknologi Sumatera
  • Dudy Darmawan Wijaya Department of Geodesy and Geomatics Engineering, Institut Teknologi Bandung
Keywords: altimetry, assimilation, shallow water, eastern Indonesia, hydrodynamic model

Abstract

Tides play a crucial role in various coastal and marine activities. Despite numerous tidal models developed in Indonesia, modeling tides in shallow waters with complex topographies remains challenging, particularly in the Eastern Indonesian Sea. This study aims to develop a high-accuracy tidal model for Eastern Indonesian sea using data assimilation techniques integrating observational data and ocean dynamics model. The study tested various scenarios, including different numbers of tide gauge observations, representers, and decorrelation length values in dynamic equations. By assimilating data from altimetry, tide gauges, and hydrodynamic models, significant improvements in model accuracy were achieved. Results show that of the 11 validator tide stations, while the rest stations have the predicted RMS values below 16 cm, and seven stations have the predicted RMS values below 9 cm. These findings highlight the potential use of assimilation technique for accurate tidal predictions in shallow waters with complex topographies, enhancing the safety and efficiency of coastal and marine activities in Eastern Indonesia.

Downloads

Download data is not yet available.

References

L. Qiang, Y. Bing-Dong, and H. Bi-Guang, “Calculation and Measurement of Tide Height for the Navigation of Ship at High Tide Using Artificial Neural Network,” Polish Maritime Research, vol. 25, no. s3, 2018, doi: 10.2478/pomr-2018-0118.

D. M. M. Bezerra, D. M. Nascimento, E. N. Ferreira, P. D. Rocha, and J. S. Mourão, “Influence of tides and winds on fishing techniques and strategies in the mamanguape River Estuary, Paraíba State, NE Brazil,” An Acad Bras Cienc, vol. 84, no. 3, 2012, doi: 10.1590/S0001-37652012005000046.

J. A. Reis-Filho, F. Barros, J. D. A. C. D. C. Nunes, C. L. S. Sampaio, and G. B. G. De Souza, “Moon and tide effects on fish capture in a tropical tidal flat,” Journal of the Marine Biological Association of the United Kingdom, vol. 91, no. 3, 2011, doi: 10.1017/S0025315410001955.

D. Nugroho, A. Koch-Larrouy, P. Gaspar, F. Lyard, G. Reffray, and B. Tranchant, “Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties,” Mar Pollut Bull, vol. 131, 2018, doi: 10.1016/j.marpolbul.2017.06.033.

T. Hatayama, T. Awaji, and K. Akitomo, “Tidal currents in the Indonesian Seas and their effect on transport and mixing,” J Geophys Res Oceans, vol. 101, no. C5, 1996, doi: 10.1029/96JC00036.

C. K. Shum, “Accuracy assessment of recent ocean tide models,” J Geophys Res Oceans, vol. 102, no. C11, 1997, doi: 10.1029/97JC00445.

D. B. Chelton, J. C. Ries, B. J. Haines, L.-L. Fu, and P. S. Callahan, “Chapter 1 Satellite Altimetry,” in International Geophysics, vol. 69, L.-L. Fu and A. Cazenave, Eds., Academic Press, 2001, pp. 1–ii. doi: https://doi.org/10.1016/S0074-6142(01)80146-7.

J. F. Turner, J. C. Iliffe, M. K. Ziebart, and C. Jones, “Global Ocean Tide Models: Assessment and Use within a Surface Model of Lowest Astronomical Tide,” Marine Geodesy, vol. 36, no. 2, pp. 123–137, Jan. 2013, doi: 10.1080/01490419.2013.771717.

G. D. Egbert, A. F. Bennett, and M. G. G. Foreman, “TOPEX/POSEIDON tides estimated using a global inverse model,” J Geophys Res, vol. 99, no. C12, 1994, doi: 10.1029/94jc01894.

P. Mazzega and M. Bergé, “Ocean tides in the Asian semienclosed seas from TOPEX/POSEIDON,” J Geophys Res Oceans, vol. 99, no. C12, pp. 24867–24881, Dec. 1994, doi: 10.1029/94JC01756.

G. A. Kivman, “Assimilating data into open ocean tidal models,” Surv Geophys, vol. 18, no. 6, 1997, doi: 10.1023/a:1006535821489.

R. D. Ray, G. D. Egbert, and S. Y. Erofeeva, “A brief overview of tides in the Indonesian seas,” Oceanography, vol. 18, no. SPL.ISS. 4, 2005, doi: 10.5670/oceanog.2005.07.

W. H. F. Smith and D. T. Sandwell, “Global sea floor topography from satellite altimetry and ship depth soundings,” Science (1979), vol. 277, no. 5334, 1997, doi: 10.1126/science.277.5334.1956.

G. D. Egbert and S. Y. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J Atmos Ocean Technol, vol. 19, no. 2, 2002, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

D. N. Arabelos, D. Z. Papazachariou, M. E. Contadakis, and S. D. Spatalas, “A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation,” Ocean Science, vol. 7, no. 3, 2011, doi: 10.5194/os-7-429-2011.

Published
2024-06-29
How to Cite
[1]
M. Nurhayati and D. D. Wijaya, “Ocean Tides Model in Eastern Indonesian Sea Using Data Assimilation from Altimetry, Tide Gauge, and Hydrodynamic Model”, JI, vol. 9, no. 1, pp. 239-249, Jun. 2024.