Population Behavior in the Mathematical Model of the Spread of COVID19 Type SEIRS

  • Asmaidi As Med Universitas Mulawarman
  • Resky Rusnanda Politeknik Aceh Selatan

Abstract

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .

Downloads

Download data is not yet available.

References

Side, S et al. 2021. Numerical solution of SIR model for transmission of tuberculosis by Runge-Kutta method. IOP Conf. Series: Journal of Physics: Conf. Series 1040 (2018) 012021. doi :10.1088/1742-6596/1040/1/012021. IOP Publishing.

Resmawan, Sianturi S, Nugrahani EH. 2017. Develop about The Analysis of SEIRS-SEI Epidemic Models on Malaria with Regard to Human Recovery Rate. Aceh International Journal of Science and Technology. 6(3) ISSN: p-2088-9860; e-2503-2398 Desember 2017, doi: 10.13170/aijst.6.3. 9303: Aceh.

Side S, Sanusi W, Rustan NK. 2020. Model Matematika SIR Sebagai Solusi Kecanduan Penggunaan Media Sosial. Journal of Mathematics, Computations, and Statistics (hal. 126 – 138) Vol. 3. No. 2, Oktober 2020. Universitas Negeri Makassar.

Ihsan H, Side S, Wulandari E. Pemodelan Penggunaan E-Money Pada E-Parking Kota Makassar. Journal of Mathematics, Computations, and Statistics (hal. 88 – 96) Vol. 3. No. 2, Oktober 2020. Universitas Negeri Makassar.

Tu PNV. 1994. Dynamical System: An Introduction with Applications in Economics and Biology. New York: Springer-Verlag.

Afwan, M.I & Helma. 2021. Pemodelan Matematika Penyebaran Penyakit Covid-19 dengan Menggunakan Model SIRS. UNPjoMath, 4(2), ISSN: 997 235516589, September 2021. Universitas Negeri Gorontalo.

Alrabaiah, H et al. 2021. A comparative study of spreading of novel corona virus disease by ussing fractional order modified SEIR model. Alexandria Engineering Journal, Oktober 2020. Alexandria University.

Published
2021-10-18
How to Cite
[1]
A. As Med and R. Rusnanda, “Population Behavior in the Mathematical Model of the Spread of COVID19 Type SEIRS”, JI, vol. 6, no. 2, pp. 83-88, Oct. 2021.