Analysis of Heart Disease Using the Random Forest Method
Abstract
Since heart disease is one of the leading causes of death worldwide, lowering the death rate requires early detection and precise analysis. Machine learning (ML) is one method of analysis. This study uses the Random Forest process, which is applied through the Weka program, to analyze heart disease. An ensemble learning process called Random Forest can categorize data on datasets with a lot of variables with a high degree of accuracy. The heart disease dataset used in this study includes patient medical information, including age, gender, blood pressure, cholesterol, and the results of various tests. To determine the variables that significantly impact the risk of heart disease and to determine the degree of model accuracy in making predictions, the data was processed using Weka and tested using the Random Forest algorithm. The study's findings demonstrate that the Random Forest process performs well in assessing heart illness with a high degree of accuracy and can provide information about the variables that affect the evaluation of heart disease. As a result, this approach may be a useful one for assisting with early heart disease identification and treatment decisions.
Downloads
References
H. Andrianof, “Sistem pakar stunting pada balita menggunakan metode,” Sains Informatika Terapan (JSIT), 2022, pp. 115-119.
Umar, A., Firdayanti, & Hijerah, N. (2022). Profil Kolesterol Total Pada Penderita Penyakit Jantung.Santosa, W. N., & Baharuddin, B. (2020). Penyakit Jantung Koroner dan Antioksidan. KELUWIH: Jurnal Kesehatan Dan Kedokteran, 1(2), 98–103. https://doi.org/10.24123/kesdok.v1i2.2566
Wahidah, & Harahap, R. A. (2021). PJK (penyakit jantung koroner) dan SKA (sindrome koroner akut) dari prespektif epidemiologi. Jurnal Kesehatan Masyarakat, 6(1), 54–65 Rahmianti, N. D., & Trisna, N. P. A. (2020). Ekokardiografi pada Gagal Jantung. Medicinus, 33(1), 43–47. https://doi.org/10.56951/medicinus.v33i1.6
Prihatin, S., & Basuki, H. (2022). Sosialisasi Deteksi Resiko Penyakit Jantung Koroner Dengan. LPPM - Universitas Muhammadiyah Purwokerto, 4, 41–44
Rachmawati, C., Martini, S., & Artanti, K. D. (2021). Analisis Faktor Risiko Modifikasi Penyakit Jantung Koroner Di Rsu Haji Surabaya Tahun 2019. Media Gizi Kesmas, 10(1), 47. https://doi.org/10.20473/mgk.v10i1.2021.47- 55
Rahmianti, N. D., & Trisna, N. P. A. (2020). Ekokardiografi pada Gagal Jantung. Medicinus, 33(1), 43–47. https://doi.org/10.56951/medicinus.v33i1.6 Rusdiana, T., Putriana, N. A., Sopyan, I., Gozali, D., & Husni, P. (2019). Pemberian Pemahaman Mengenai Sediaan herbal yang Berfungsi untuk Pemeliharaan Kesehatan jantung dan Ginjal di Desa Cibeusi, Sumedang, Jawa Barat. Jurnal Pengabdian Kepada Masyarakat, 4(6), 139–141
Santosa, W. N., & Baharuddin, B. (2020). Penyakit Jantung Koroner dan Antioksidan. KELUWIH: Jurnal Kesehatan Dan Kedokteran, 1(2), 98–103. https://doi.org/10.24123/kesdok.v1i2.2566
Ihsan, & Wajhillah, R. (2015). Penerapan Algoritma C4.5 Terhadap Diagnosa Penyakit Demam Tifoid Berbasis Mobile. Jurnal Swabumi AMIK BSI Sukabumi, III(1), 50–58. https://ejournal.bsi.ac.id/ejurnal/index.php/ swabumi/article/view/1006
Hermiz, C., & Sedhai, Y. R. (2023). Angina. National Library of Medicine. https: ://www.ncbi.nlm.nih.gov/books/NBK55 7672/
Wicaturratmashudi, S., & Pastari, M. (2020). Deteksi Dini Penyakit Jantung Koroner Dengan Pemeriksaan Rekam Ekg (Elektrokardiogram) Di Rt 04 Rw 01 Lorong Sianjur, Kelurahan 5 Ilir, Kecamatan Ilir Timur Ii, Kota Palembang. Jurnal Abdikemas, 2, 45–48
Zhou, W., Sin, J., Yan, A. T., Wang, H., Lu, J., Li, Y., Kim, P., R, A., & Ng, M.-Y. (2023). Qualitative and Quantitative Stress Perfusion Cardiac Magnetic Resonance in Clinical Practice: A Comprehensive Review. MDPI. https://www.mdpi.com/2075-4418/13/3/52
Copyright (c) 2025 Jupron, Sutrisno

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.