A YOLO-Based Machine Learning Framework for Detection of Soft Pneumatic Actuator Bending Angles

  • Syahirul Alim Ritonga Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada
  • Raditya Fadhil Arva Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada
  • Sarah Iftin Atsani Center of Additive Manufacturing and Systems, Universitas Gadjah Mada
  • Mohammad Ardyansah Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada
  • Herianto Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada
Keywords: soft pneumatic actuator, soft robot, Yolo, machine learning, artificial intelligence

Abstract

The bending angle of soft pneumatic actuator (SPA) is a critical parameter influencing their reliability and effectiveness across various applications. Conventional measurement methods are often labour-intensive and impractical for experiments requiring multiple trials, creating a need for efficient, non-invasive techniques. This study proposes a machine learning framework leveraging YOLO (You Only Look Once) models to detect SPA bending angles from image data, eliminating the need for additional hardware. A comprehensive dataset of SPAs under varying actuation pressures, with meticulously labelled bending angles, was curated to train a YOLO-based regression model. The results highlight the model's strong performance, achieving a recall of 99.1%, precision of 70%, and mean average precision (mAP) scores of 86.42% (IoU 0.5) and 84.35% (IoU 0.5–0.95). Low training and validation losses indicate high accuracy in bounding box predictions, object-background differentiation, and object classification. Optimized learning rates ensured efficient parameter updates, achieving convergence without overfitting. The proposed framework demonstrates a robust balance between accuracy, robustness, and efficiency, making it a practical solution for reliable SPA bending angle detection in real-world applications. This study underscores the potential of machine learning-driven techniques to streamline SPA characterization, offering a scalable and non-invasive alternative to traditional methods.

Downloads

Download data is not yet available.

References

M. S. Xavier et al., ‘Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications’, IEEE Access, vol. 10, pp. 59442–59485, 2022, doi: 10.1109/ACCESS.2022.3179589.

W. Hu, R. Mutlu, W. Li, and G. Alici, ‘A Structural Optimisation Method for a Soft Pneumatic Actuator’, Robotics, vol. 7, no. 2, 2018, doi: 10.3390/robotics7020024.

M. G. Antonelli, P. Beomonte Zobel, F. Durante, and T. Raparelli, ‘Additive Manufacturing Applications on Flexible Actuators for Active Orthoses and Medical Devices’, J. Healthc. Eng., vol. 2019, no. 1, p. 5659801, 2019, doi: 10.1155/2019/5659801.

P. H. Nguyen and W. Zhang, ‘Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices’, Sci. Rep., vol. 10, no. 1, p. 9638, Jun. 2020, doi: 10.1038/s41598-020-65003-2.

C. Tawk and G. Alici, ‘A Review of 3D-Printable Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities’, Adv. Intell. Syst., vol. 3, no. 6, p. 2000223, 2021, doi: 10.1002/aisy.202000223.

M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, and M. Sitti, ‘Soft actuators for real-world applications’, Nat. Rev. Mater., vol. 7, no. 3, pp. 235–249, Mar. 2022, doi: 10.1038/s41578-021-00389-7.

H. A. Sonar, J.-L. Huang, and J. Paik, ‘Soft Touch using Soft Pneumatic Actuator–Skin as a Wearable Haptic Feedback Device’, Adv. Intell. Syst., vol. 3, no. 3, p. 2000168, 2021, doi: 10.1002/aisy.202000168.

G. Alici, T. Canty, R. Mutlu, W. Hu, and V. Sencadas, ‘Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers’, Soft Robot., vol. 5, no. 1, pp. 24–35, Feb. 2018, doi: 10.1089/soro.2016.0052.

Y. Elsayed, C. Lekakou, T. Geng, and C. M. Saaj, ‘Design optimisation of soft silicone pneumatic actuators using finite element analysis’, in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Jul. 2014, pp. 44–49. doi: 10.1109/AIM.2014.6878044.

D. Maruthavanan, A. Seibel, and J. Schlattmann, ‘Fluid-Structure Interaction Modelling of a Soft Pneumatic Actuator’, Actuators, vol. 10, no. 7, Art. no. 7, Jul. 2021, doi: 10.3390/act10070163.

G. Zhong, W. Dou, X. Zhang, and H. Yi, ‘Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures’, Int. J. Mech. Sci., vol. 193, p. 106150, Mar. 2021, doi: 10.1016/j.ijmecsci.2020.106150.

A. Mészáros and J. Sárosi, ‘Increasing the Force Exertion of a Soft Actuator Using Externally Attachable Inter-Chamber Plates’, Actuators, vol. 12, no. 6, 2023, doi: 10.3390/act12060222.

K. Elgeneidy, N. Lohse, and M. Jackson, ‘Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors – A data-driven approach’, Mechatronics, vol. 50, pp. 234–247, Apr. 2018, doi: 10.1016/j.mechatronics.2017.10.005.

M. C. Yuen, R. Kramer-Bottiglio, and J. Paik, ‘Strain sensor-embedded soft pneumatic actuators for extension and bending feedback’, in 2018 IEEE International Conference on Soft Robotics (RoboSoft), Apr. 2018, pp. 202–207. doi: 10.1109/ROBOSOFT.2018.8404920.

L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, ‘Machine learning on big data: Opportunities and challenges’, Neurocomputing, vol. 237, pp. 350–361, May 2017, doi: 10.1016/j.neucom.2017.01.026.

P. Choudhury, R. T. Allen, and M. G. Endres, ‘Machine learning for pattern discovery in management research’, Strateg. Manag. J., vol. 42, no. 1, pp. 30–57, 2021, doi: 10.1002/smj.3215.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘A survey of the recent architectures of deep convolutional neural networks’, Artif. Intell. Rev., vol. 53, no. 8, pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6.

Y. Liu, H. Pu, and D.-W. Sun, ‘Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices’, Trends Food Sci. Technol., vol. 113, pp. 193–204, Jul. 2021, doi: 10.1016/j.tifs.2021.04.042.

N. S. ALKolifi ALEnezi, ‘A Method Of Skin Disease Detection Using Image Processing And Machine Learning’, Procedia Comput. Sci., vol. 163, pp. 85–92, 2019, doi: 10.1016/j.procs.2019.12.090.

B. S. Kusumo, A. Heryana, O. Mahendra, and H. F. Pardede, ‘Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing’, in 2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Nov. 2018, pp. 93–97. doi: 10.1109/IC3INA.2018.8629507.

N. Aravind, S. Nagajothi, and S. Elavenil, ‘Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams’, Constr. Build. Mater., vol. 297, p. 123785, Aug. 2021, doi: 10.1016/j.conbuildmat.2021.123785.

A. Müller, N. Karathanasopoulos, C. C. Roth, and D. Mohr, ‘Machine Learning Classifiers for Surface Crack Detection in Fracture Experiments’, Int. J. Mech. Sci., vol. 209, p. 106698, Nov. 2021, doi: 10.1016/j.ijmecsci.2021.106698.

Published
2025-03-01
How to Cite
[1]
Syahirul Alim Ritonga, Raditya Fadhil Arva, Sarah Iftin Atsani, Mohammad Ardyansah, and Herianto, “A YOLO-Based Machine Learning Framework for Detection of Soft Pneumatic Actuator Bending Angles”, JI, vol. 10, no. 1, pp. 130-140, Mar. 2025.