A Comparative Sentiment Analysis of Computer Engineering Student Feedback Using Decision Trees and SVM

  • Kharis Hudaiby Hanif Universitas Borneo Tarakan
  • Arif Fadllullah Computer Engineering, University of Borneo Tarakan
  • Novita Ranti Muntiari Politeknik Kaltara
  • Irgi Ahmad Fahrezi Computer Engineering, University of Borneo Tarakan
Keywords: Sentiment Analysis, SVM, Decision Tree, Student Feedback, Lecture performance

Abstract

The University of Borneo Tarakan, like many Indonesian universities, is committed to continuous quality improvement in education services. A crucial aspect of this improvement is gathering and analyzing student feedback to enhance lecturer performance. This research focuses on analyzing student comments using sentiment analysis, a technique that categorizes text into positive, negative, and neutral sentiments. To achieve this, two machine learning algorithms were employed: Decision Trees and Support Vector Machines (SVM).

The research involved two approaches: Lexicon-Based Sentiment Analysis and TF-IDF word weighting. The Lexicon-Based approach compared the automated sentiment classification with manual human categorization to assess accuracy. The TF-IDF method, on the other hand, aimed to improve classification accuracy by assigning weights to words based on their frequency and importance. The experimental results demonstrated that Decision Trees outperformed SVM in terms of classification accuracy, achieving 95.454546% compared to 94.805194%. This finding suggests that Decision Trees  is a more effective technique for sentiment analysis of student comments in this specific

Downloads

Download data is not yet available.

References

M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.

K. H. Hanif, A. Yudhana, and A. Fadlil, “Penentuan Guru Berprestasi Menggunakan Metode Analytical Hierarchy Process (AHP) dan VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 6, p. 1119, 2022, doi: 10.25126/jtiik.2022934628.

O. Manullang, C. Prianto, and N. H. Harani, “ANALISIS SENTIMEN UNTUK MEMPREDIKSI HASIL CALON PEMILU PRESIDEN MENGGUNAKAN LEXICON BASED DAN RANDOM FOREST,” J. Ilm. Inform., vol. 11, no. 02 SE-Articles, pp. 159–169, Sep. 2023, doi: 10.33884/jif.v11i02.7987.

N. R. Muntiari, K. H. Hanif, and I. Chairun Nisa, “Perbandingan Algoritma Regresi Logistik, Support Vector Machine, dan Gradient Boosting Pada Analisis Sentimen Data Komentar Siswa,” J. Ilmu Komput. dan Teknol., vol. 4, no. 2, 2023, [Online]. Available: https://ejournal.uhb.ac.id/index.php/IKOMTI/article/view/1286

T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.

K. H. Hanif and N. R. Muntiari, “Penerapan Algoritma Decision Tree, Svm, Naïve Bayes Dalam Deteksi Stunting Pada Balita,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 8, no. 1, pp. 105–109, 2024, [Online]. Available: https://doi.org/10.46880/jmika.Vol8No1.pp105-109

F. G. Altin, İ. Budak, and F. Özcan, “Predicting the amount of medical waste using kernel-based SVM and deep learning methods for a private hospital in Turkey,” Sustain. Chem. Pharm., vol. 33, p. 101060, 2023, doi: https://doi.org/10.1016/j.scp.2023.101060.

Y. A. Singgalen, “Comparative analysis of decision tree and support vector machine algorithm in sentiment classification for birds of paradise content,” Int. J. Basic Appl. Sci., vol. 12, no. 3, pp. 100–109, 2023, [Online]. Available: www.ijobas.pelnus.ac.id

K. Du, F. Xing, R. Mao, and E. Cambria, “FinSenticNet: A Concept-Level Lexicon for Financial Sentiment Analysis,” in 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 2023, pp. 109–114. doi: 10.1109/SSCI52147.2023.10371970.

S. Suryani, M. F. Fayyad, D. T. Savra, V. Kurniawan, and B. H. Estanto, “Sentiment Analysis of Towards Electric Cars using Naive Bayes Classifier and Support Vector Machine Algorithm,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 1, pp. 1–9, 2023, doi: 10.57152/predatecs.v1i1.814.

K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.24076/joism.2021v3i1.341.

M. Alfi, R. Reynaldhi, and Y. Sibaroni, “Analisis Sentimen Review Film pada Twitter menggunakan Metode Klasifikasi Hybrid SVM, Naïve Bayes, dan Decision Tree,” vol. 8, no. 5, pp. 10127–10137, 2021.

S. E. Suryana, B. Warsito, and S. Suparti, “Penerapan Gradient Boosting Dengan Hyperopt Untuk Memprediksi Keberhasilan Telemarketing Bank,” J. Gaussian, vol. 10, no. 4, pp. 617–623, 2021, doi: 10.14710/j.gauss.v10i4.31335.

R. Daniel, “Rancang Bangun Alat Monitoring Kelembaban, PH Tanah dan Pompa Otomatis Berbasis Arduino,” J. Appl. Comput. Sci. Technol., vol. 3, no. 2, pp. 208–212, 2022, doi: 10.52158/jacost.v3i2.384.

Y. Dani and M. A. Ginting, “Classification of Predicting Customer Ad Clicks Using Logistic Regression and k-Nearest Neighbors,” Int. J. Informatics Vis., vol. 7, no. 1, pp. 98–104, 2023, doi: 10.30630/joiv.7.1.1017.

Published
2025-02-13
How to Cite
[1]
K. H. Hanif, Arif Fadllullah, Novita Ranti Muntiari, and Irgi Ahmad Fahrezi, “A Comparative Sentiment Analysis of Computer Engineering Student Feedback Using Decision Trees and SVM”, JI, vol. 10, no. 1, pp. 71-82, Feb. 2025.