SEIR Epidemic Model of the Spread of Tuberculosis in Samarinda City with the Addition of Vaccination Parameters

  • Indriasri Raming Mulawarman University
  • Andi Nafa Nurfadillah Universitas Mulawarman
  • Ersya Nanda Aulia Universitas Mulawarman
  • Muhammad Rafiq Universitas Mulawarman
  • Julia Universitas Mulawarman
Keywords: Runge-Kutta Method, SEIR, Tuberkulosis (TBC)

Abstract

Tuberculosis (TB) is a contagious, dangerous disease that infects the human body through the respiratory tract. The city of Samarinda itself is the city with the second highest rate of tuberculosis transmission in East Kalimantan. The aim of this research is to build a SEIR mathematical model of the spread of tuberculosis, analyze the stability of the model, and simulate the model. This research uses the Runge-Kutta method, which has high accuracy in estimating solutions and is relatively stable. This data is secondary data obtained through BPS as well as articles from previous researchers. The results of the research showed that the percentage of increase in the spread of the virus in the susceptible population (S) during the first week was 2,048%, then the 4th week to the 100th day decreased by approximately 164,100%, then the percentage of the population that was exposed but did not spread it (E) decreased in the first week, namely 34,525%, then in the 4th week to the 100th day there was a very significant decrease, namely 7,600%, then the percentage of the population infected and infectious (I) in the first week rose to 19,138%, then in the 4th week to the 2nd week -100 experienced a decrease of approximately 716,900%, and finally, the percentage of the population who recovered in the first week began to increase due to the very influential vaccine, namely increasing by 26,860%, then the 4th week to the 100th week also experienced a significant increase, namely by 81.681%.

Downloads

Download data is not yet available.

References

P. E. Mathofani, & R. Febriyanti, “Faktor-Faktor Yang Berhubungan Dengan Kejadian Penyakit Tuberkulosis (Tb) Paru Di Wilayah Kerja Puskesmas Serang Kota Tahun 2019,” Vol. 12(10), 2020.

R. Ramadhan, E. Fitria, & R. Rosdiana, “Deteksi Mycobacterium Tuberculosis Dengan Pemeriksaan Mikroskopis Dan Teknik Pcr Pada Penderita Tuberkulosis Paru Di Puskesmas Darul Imarah,” Sel Jurnal Penelitian Kesehatan, Vol. 4(2), pp. 73–80, 2017. Https://Doi.Org/10.22435/Sel.V4i2.1463

Dinkes Prov. Kaltim, “Profil kesehatan Provinsi Kalimantan Timur 2017. Samarinda: Dinkes Prov. Kaltim,” 2017.

Y. Ma, C.R. Horsburgh, L.F. White, & H.E. Jenkins, “Quantifying Tb Transmission: A Systematic Review Of Reproduction Number And Serial Interval Estimates For Tuberculosis, Epidemiology And Infection, Vol. 146(12), pp. 1478–1494, 2018. Https://Doi.Org/10.1017/S0950268818001760

A. Shaikh, K. Sriraman, S. Vaswani, V. Oswal, & N. Mistry, “Detection Of Mycobacterium Tuberculosis Rna In Bioaerosols From Pulmonary Tuberculosis Patients,” International Journal Of Infectious Diseases, Vol. 86, pp. 5–11, 2019. Https://Doi.Org/10.1016/J.Ijid.2019.06.006

F. Malorung, M. Blegur, R.M. Pangaribuan, & M.Z. Ndii, “Analisis Sensitivitas Model Matematika Penyebaran Penyakit Dengan Vaksinasi,” Jurnal Matematika Integratif, Vol. 14(1), pp. 9, 2018. Https://Doi.Org/10.24198/Jmi.V14.N1.16000.9-15

S. Side, Sukarna., and G.T. Asfarina, “Analisis Kestabilan Penyebaran Kelera Menggunakan Model SEIRS dengan Vaksinasi dan Faktor Treatment,” Journal of Mathematics, and Statistics, Vol.1(2), pp. 155-168, 2018.

W.N. Awaliya, “Model SEIR pada Penyakit Tuberkulosis di Kabupaten Bulukumba (Skripsi),” Makassar: Universitas Negeri Makassar, 2016.

F. H. Fadilah & Zulakmal, “Kajian Perilaku Model Matematika Penularan Penyakit Tuberkulosis,” Jurnal Matematika UNAND, Vol. 5(2). pp 26-32, 2016.

W. Sanusi, Alimuddin., & A. D. N. Islam, “Model Regresi Cox Non Proporsional Hazard dan Aplikasinya pada Data Ketahanan Hidup Pasien Penderita Tuberkulosis di Balai Besar Kesehatan Paru Masyarakat Makassar,” Journal of mathematics, and Statistics, Vol. 1(1), pp. 46-61, 2018.

Syam, “Model SEIRS Penyebaran Penyakit Tuberkulosis di Kota Makassar,” Jurnal of Mathematics, Computations, and Statistics, Vol 3(1), pp. 11-19, 2020.

Kasbawati, ”Penentuan Nilai R_0 dengan Menggunakan Operator The Next Generation,” Jurnal Matematika, Statistika & Komputasi, Vol 6(1), pp. 60-61, 2009.

Effendi, ”Penerapan Metode Reduksi Graf Untuk Penentuan R_0 Pada Model Vector-Host,” Jurnal Eksakta, Vol. 2(8), pp. 36-43, 2012.

T.M. Singgih, E. Apriliani, L. Hanafi, ” Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa,” Jurnal sains dan seni ITS, Vol. 4 (2), pp. 2337-3520, 2015.

D. Goeken and O.,Johnson., ”Runge-Kutta with Higher orde derivative approximations,” Appl. Numer. Math., Vol. 34, pp. 207-218, 2020.

W. Xinyuan., ”A class of Runge-Kutta formuale of orde three and four with reduced evaluations of function,” Appl. Math. Comput., Vol. 146, pp. 417-432, 2003.

Published
2024-05-15
How to Cite
[1]
Indriasri Raming, Andi Nafa Nurfadillah, Ersya Nanda Aulia, Muhammad Rafiq, and Julia, “SEIR Epidemic Model of the Spread of Tuberculosis in Samarinda City with the Addition of Vaccination Parameters”, JI, vol. 9, no. 1, pp. 152-163, May 2024.