Effect of Radiation Position of Photon Beam at Axis Point and Field Edge on Absorbed Dose on Linear Accelerator (Linac)

  • Nur Alya Physics Study Program, Mulawarman University
  • Robert Janssen Stevenly Radiotherapy Installation, A.W. Sjahranie Hospital
  • Pratiwi Sri Wardani Physics Study Program, Mulawarman University
  • Erlinda Ratnasari Putri Physics Study Program, Mulawarman University
Keywords: Ionization detector, Photon dose, Linac, TRS 398

Abstract

Radiotherapy is a medical treatment that uses ionizing radiation to kill cancer cells using a Linear Accelerator (Linac). One of the errors in radiotherapy irradiation can occur because the radiation beam that comes out is not in accordance with the planning. Therefore, radiation absorbed dose measurement is needed to carry out as a quality assurance to control the accuracy and suitability of the dose to be received by the patient by following the standards of the Technical Report Series (TRS) 398. This study was conducted at Radiotherapy Installation of RSUD A.W. Sjahranie Samarinda. In the measurement of radiation absorbed dose, the detector was placed in the center of the water phantom with a certain depth and placed in an axis position perpendicular to the radiation source. The detector is not only placed in the axis position, but also placed on the 4 edges of the field with the aim of knowing the effect of the location of the detector on the absorbed dose on the Linac plane. Medium water phantom, Farmer type ionization detector with a depth of 10 cm, and radiation source distance to the phantom surface of 100 cm were applied in this study. The measurement deviation results at the axis position and 4 field edges are 0.01%, 0.06%, 0.03%, 0.05%, and 0.05%. These values are within the tolerance limits written in the IAEA TRS 398 protocol, which is ± 2%. This states that the radiation absorbed dose by the water phantom is homogeneous in all directions.

Downloads

Download data is not yet available.

References

Abrar, L. A., Milvita, D., Prasetio, H., & Diyona, F, “Verifikasi Dosis Radiasi Berkas Foton 6 MV pada LINAC CLINAX CX Menggunakan Detektor Bilik Ionisasi di RSP Universitas Andalas,”. Jurnal Fisika Unand, vol. 12, no. 1, pp. 82-87, 2023.

Arafahnti, L. B., Umiatin, U., & Prasetio, H, “Pengaruh Energi Linac Terhadap Respon Film Dosimetri Gafchromic,” Prosiding Seminar Nasional Fisika (E-JOURNAL, vol. 11, no. 1, pp. 71-76, 2023.

Fauzi, A., Aliyah, F., & Darmawati, D, “Implementation of Trs-398 Protocol in Routine Calibration of Linac By Determination of Slab Phantom on Water Phantom Correction Factor,” Spektra: Jurnal Fisika Dan Aplikasinya, vol. 7, no. 2, pp. 79-92, 2022, https://doi.org/10.21009/spektra.072.03.

IAEA, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. International Atomic Energy Agency, Technical Report Series, TRS-398, Vienna, 2000.

Iqbal, M., Milvita, D., & Ilyas, M, ”Analisis Perencanaan Radioterapi Menggunakan Teknik Intensity Modulated Radiotherapy (IMRT) pada Pasien Kanker Serviks,” Jurnal Fisika Unand, vol. 12, no. 1, pp. 164-170, 2023.

Khan, F. M, “Physics of Radiation Therapy, Third Edition,” New York: Lipincott Wiliams and Wilins, 2003.

Kurnianto, P., Maslebu, G., Muninggar, J., & Hidayatullah, M, “Quality Assurance Plan for Linear Accelerator (LINAC) on Nasopharynx Cancer (NPC) Treatment at Radiotherapy Installation Ken Saras Hospital,”. Advance Sustainable Science, Engineering and Technology (ASSET), vol. 5, no. 2, pp. 01-09, 2023.

Puspitasari, R. A., Pertiwi, W. I., Sholihah, P. M., Fariqoh, W. H., Kavilani, N., & Astuti, S. D, “Analisis Kualitas Berkas Radiasi LINAC Untuk Effektivitas Radioterapi,” Jurnal Biosains Pascasarjana, vol. 22, no. 1, pp. 11-19, 2020.

Ramona, F., Milvita, D., & Diyona, F, “Verifikasi Nilai Dosis Radiasi Berkas Elektron Pesawat LINAC dengan Luas Lapangan Blok Cerrobend (6×6) cm2 dan (8×8) cm2 Berdasarkan Protokol IAEA TRS 398,” Jurnal Fisika Unand, vol. 9, no. 2, pp. 238–243, 2020.

Sugiarta, K., Ratini, N. N., Suyanto, H., & Syarifuddin, “Analisis Dosis Keluaran Berkas Sinar-X Pesawat Linac Varian Clinac CX Berdasarkan Protokol Dosimetri IAEA TRS 398,” Koppa Journal Kappa Journal, Pendidikan Fisika FMIPA Universitas Hamzanwadi, vol. 6, no. 2, pp. 366 – 372, 2022.

Suharmono, B. H., Anggraini, I. Y., Hilmaniyya, H., & Astuti, S. D, “Quality Assurance (QA) Dan Quality Control (QC) Pada Instrumen Radioterapi Pesawat LINAC,” Jurnal Biosains Pascasarjana, vol. 22, no. 2, pp. 73-80, 2020.

Susanto, R. E., Setiawati, E., Arianto, F., & Basuki, P, “Penentuan Faktor Koreksi Dosis Radiasi Sinar-X Linac 6 MV Pada Ketidakhomogenan Jaringan Tubuh dengan MCNPX Determination of Linac 6 MV X-Ray Radiation Dose Correction Factor on Inhomogeneity of Body Tissue with MCNPX,” Jurnal Ilmiah Aplikasi Isotop dan Radiasi, vol. 18, no. 1, pp. 17–32, 2022.

Susworo, R, “Dasar-Dasar Radioterapi,” Jakarta: UI Press, 2007.

Published
2024-03-18
How to Cite
[1]
N. Alya, R. J. Stevenly, P. S. Wardani, and E. R. Putri, “Effect of Radiation Position of Photon Beam at Axis Point and Field Edge on Absorbed Dose on Linear Accelerator (Linac) ”, JI, vol. 9, no. 1, pp. 103-110, Mar. 2024.