SEIITR Model for Diabetes Mellitus Distribution in Case of Insulin and Care Factors

  • Nur Fajri STIMI MEULABOH
  • Sanusi Universitas Abulyatama
  • Asmaidi Politeknik Aceh Selatan
Keywords: Diabetes Mellitus, SEIITR Model, Basic Reproduction Number, Insulin

Abstract

This research is done to learn diabetes mellitus type SEIITR with insulin and care factors. Mathematical model type SEIITR is a mathematical model of diabetes in which the human population is divided into five groups: susceptible humans (Susceptible) S, exposed (Exposed) E, infected I without treatment, infected (Infected) Iwith treatment dan recovered (Recovery) R. The SEIITR model has two fixed points, namely, a fixed point without disease and an endemic fixed point. By using basic reproduction numbers (R0), it is found that the fixed point without disease is stable if R0 < 1 and when R0 > 1. Then the fixed point without disease is unstable. The simulation shows the effect of giving insulin to changes in the value of the basic reproduction number. If the effectiveness of β decreases, the basic reproduction number decreases too. Thus, a decrease in the value of this parameter will be able to help reduce the rate of diabetes mellitus in the population.

Downloads

Download data is not yet available.

References

Subroto, M. Ahkam 2006. Ramuan Herbal untuk Diabetes Mellitus. Depok: Penebar Swadaya

Trisnawati, S. K Setyorogo. S. 2013. Faktor Resiko Kejadian Diabetes Melitus Tipe II Di Puskesmas Kecamatan Cingkareng Jakarta Barat Tahun 2012. Jurnal Ilmiah Kesehatan, 5(1) : pp. 6-11

Asmaidi A, Sianturi P, Nugrahani EH. A SIR Mathematical Model of Dengue Transmission and its Simulation. IAES. 2014; 2(11)

Asmaidi, Suryanto, ED. 2017. Pemodelan Matematika Tipe SEIR Diabetes Mellitus. Seminar Nasional Teknologi Rekayasake - 4 (SNTR-4), ISSN 2407 – 8735, 2 Desember 2017. Politeknik Aceh Selatan

Lestari HE, Lestari D, ‘Arifah H. 2017.AnalisisKestabilan Model SEIIT Pada Penyakit Diabetes Mellitus. Jurnal Matematika

Asmaidi, Suryanto, ED. 2019. Mathematics Modeling of Diabetes Mellitus Type SEIIT by Considering Treatment and Genetics Factors. IOP Conference Series: Materials Science and Engineering, 506(1), April 2019. Politeknik Aceh Selatan

Tu PNV. 1994. Dynamical Sistem. New York: Springer-Verlag

Van den Driessche P, Watmough J. 2008. Chapter 6: FutherNothes on the BasicReproduction Number. Mathematical Epidemiology, Lecture Notes Mathematics. New York: Springer. 1945: 159-178.

Asmaidi. 2017. Mathematical Modeling of SEIR Type to Controlling Diabetes Mellitus Disease Using Insulin. Inotera. (2)-8-17.

Published
2020-08-13
How to Cite
[1]
N. Fajri, Sanusi, and Asmaidi, “SEIITR Model for Diabetes Mellitus Distribution in Case of Insulin and Care Factors”, JI, vol. 5, no. 2, pp. 100-106, Aug. 2020.