Indibiz Product Recommendation System Using Knowledge Base Method
Abstract
Many companies in the electronic field are competing in the business sector. One of them is PT Telekomunikasi Indonesia Klaten branch which sells Indibiz products. Indibiz products are internet products designed for Small and Medium Enterprises. The variety of internet products available makes customers face difficulties in choosing internet products. Because of these problems, it is important to develop a recommendation system that can help customers. The researcher's goal is to design a recommendation system using the Knowledge Base method for internet product selection. Researchers use the Knowledge Base Recommendation method which has the advantage of being able to set a priority scale according to customer needs. Researchers also carry out a system development method using Rapid Application Development (RAD) which consists of 3 stages, namely business modeling, data modeling, and process modeling. In this modeling, internet product selection includes 4 search attributes, namely internet type, price, facilities, and internet speed.
Based on the results of calculating the similarity value with 42 sample data, the system can provide internet product recommendations that match customer needs based on attributes. Internet products with the highest similarity value of 0.769 will be displayed in the recommendation system. With the design of this system, it can make it easier for customers to determine the selection of internet products needed.
Downloads
References
A. Setya, P. Widyaningsih, and S. Sumarlinda, “Animal Nutrition Selection Recommendation System with Content Based Filtering Method,” vol. 9, no. 2, pp. 363–369, 2024, doi: 10.31572/inotera.Vol9.Iss2.2024.ID378.
M. S. U. Herny Februariyanti, Aryo Dwi Laksono, Jati Sasongko Wibowo, “Implementasi Metode Collaborative Filtering Untuk Sistem Rekomendasi Penjualan Pada Toko Mebel,” J. Khatulistiwa Inform., vol. IX, no. I, pp. 43–50, 2021, [Online]. Available: www.unisbank.ac.id
Z. Munawar, N. I. Putri, and D. Z. Musadad, “Meningkatkan Rekomendasi Menggunakan Algoritma Perbedaan Topik,” J. Sist. Inf., vol. 01, no. 02, pp. 17–26, 2020.
F. R. Hariri and L. W. Rochim, “Sistem Rekomendasi Produk Aplikasi Marketplace Berdasarkan Karakteristik Pembeli Menggunakan Metode User Based Collaborative Filtering,” Teknika, vol. 11, no. 3, pp. 208–217, 2022, doi: 10.34148/teknika.v11i3.538.
S. Sutono, A. Musrifah, and H. L. Fauzy, “Metode Knowledge Based Recommendation Dengan Backward Chaining Untuk Perancangan Aplikasi E-Commerce,” Media J. Inform., vol. 14, no. 2, p. 63, 2022, doi: 10.35194/mji.v14i2.2555.
V. Atina and D. Hartanti, “Knowledge Based Recommendation Modeling for Clothing Product Selection Recommendation System,” J. Tek. Inform., vol. 3, no. 5, pp. 1407–1413, 2022, doi: 10.20884/1.jutif.2022.3.5.584.
O. I. - AMIK BSI Bekasi and G. B. A. L. - AMIK BSI Bekasi, “Metode Rapid Application Development (RAD) pada Perancangan Website Inventory PT. Sarana Abadi Makmur Bersama (S.A.M.B) Jakarta,” Evolusi J. Sains dan Manaj., vol. 6, no. 2, pp. 12–18, 2018, doi: 10.31294/evolusi.v6i2.4414.
A. D. Safitri, A. Sulami, and J. Safitri, “Perancangan Sistem Rekomendasi Produk Sepatu Menggunakan Metode Knowledge Base Rekomendation,” J. Ris. dan Apl. Mhs. Inform., vol. 4, no. 03, pp. 589–596, 2023, doi: 10.30998/jrami.v4i03.8767.
S. Pranoto, S. Sutiono, and D. Nasution, “Penerapan UML Dalam Perancangan Sistem Informasi Pelaporan Dan Evaluasi Pembangunan Pada Bagian Administrasi Pembangunan Sekretariat Daerah Kota Tebing Tinggi,” vol. 2, pp. 384–401, 2024.
M. Purnasari, Y. Hartiwi, and N. Nurhayati, “Perancangan Sistem Informasi Pengelolaan Dana Masjid Berbasis Web Menggunakan Unified Modeling Language (UML),” Resolusi Rekayasa Tek. Inform. dan Inf., vol. 2, no. 6, pp. 258–264, 2022, doi: 10.30865/resolusi.v2i6.416.
P. Ilmiah, L. S. Ahmad, P. S. Informatika, F. Komunikasi, D. A. N. Informatika, and U. M. Surakarta, “Sistem Informasi Penjualan Dan Pendataan Barang,” 2023.
Copyright (c) 2024 Lidia Rendhiva, Dwi Hartanti , Margaretha Evi Yuliana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.