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I. Introduction  
Soft pneumatic actuators (SPAs) have garnered significant attention in recent years due to their 

inherent flexibility, compliance, and adaptability [1], which make them ideal for applications in 
robotics [2], healthcare devices [3], and assistive devices [4]. Unlike traditional rigid actuators, SPAs 
can safely interact with delicate objects [5] and conform to complex surfaces [6], enabling innovative 
solutions in fields such as soft robotics and wearable devices [7]. Despite their potential, accurately 
quantifying and controlling the bending motion of SPAs remains a critical challenge, as their behavior 
is influenced by nonlinear material properties [8], geometric design [9], and actuation pressures [10]. 

One critical aspect of SPA characterization is the measurement of bending angle performance, 
which directly impacts their reliability and efficacy in various applications [11]. Precise quantification 
of the bending angle is crucial to ensure consistent and predictable operation. Conventional methods 
for angle measurement often involve manual procedures [12], which are not only labor-intensive but 
also impractical for experiments requiring multiple trials. Another advance method is by 
implementing external sensors such as flex sensors [13] or strain sensors [14]. While effective, these 
methods can introduce complexities such as fabrication difficulties and increased system cost. As a 
result, there is a growing interest in non-invasive, data-driven techniques that leverage machine 
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learning (ML) to infer the bending angle from image or sensor data without requiring additional 
hardware. 

Machine learning has established itself as a transformative tool in addressing complex problems 
by capturing intricate, nonlinear relationships within data [15]. Unlike traditional methods, which 
often rely on predefined assumptions and linear models, machine learning algorithms adapt to data 
patterns, uncovering hidden relationships and providing robust predictions [16]. Specifically, 
convolutional neural networks (CNNs) have emerged as a standout technique in image-based 
applications due to their ability to automatically learn hierarchical feature representations directly 
from raw image data [17]. This capability is particularly advantageous in tasks requiring high accuracy 
in feature extraction and regression, such as predicting continuous variables, where CNNs excel in 
identifying subtle variations and spatial patterns in images [18]. 

In practical applications, machine learning-based image processing has been successfully 
implemented in diverse fields. For instance, in healthcare, CNNs have enabled breakthroughs in 
disease detection, such as identifying skin conditions like melanoma, psoriasis, and eczema [19]. 
These systems analyse large datasets of skin images, learning to distinguish between healthy and 
diseased tissues based on nuanced visual features. Similarly, in agriculture, machine learning has been 
used to detect diseases in crops such as corn by analysing images of leaves and identifying symptoms 
like discoloration or texture changes caused by fungal infections or pest damage [20]. In engineering, 
CNNs have been employed for crack [21] and fracture detection [22] in materials and infrastructure 
by processing high-resolution images of surfaces. 

This study focuses on developing a machine learning framework to detect the bending angle of 
SPAs using image data. Building upon the foundational principles of CNNs, YOLO (You Only Look 
Once) models have been developed to perform object detection and classification with remarkable 
efficiency. YOLO's ability to predict bounding boxes and object classes simultaneously offers an 
optimized framework for tasks that require real-time performance. By utilizing CNN-based YOLO 
models, the proposed framework aims to achieve robust angle prediction across various actuation 
pressures. 

In this study, a comprehensive dataset of SPAs under varying actuation pressures was curated, with 
corresponding bending angles meticulously labelled. A YOLO-based regression model was designed, 
trained, and optimized to predict the bending angle from images. Finally, the proposed model was 
evaluated against established metrics, demonstrating its efficacy and potential for real-world 
applications. 

By addressing the challenges associated with SPA angle detection through a CNN and YOLO-
based approach, this study contributes to advancing in soft robotics and provides a foundation for 
further integration of data-driven methods in the field. 

II. Method 

A. Machine learning process 
The machine learning process begins with recording a soft pneumatic actuator from various angles 

with specific rotation variations. The recorded videos are edited to replace the background with black, 
followed by frame extraction using a Python program ("frame_extractor.py") to isolate non-black 
pixels. An annotation program ("annotator.py") automatically generates .txt files for each image, 
providing necessary annotations for training. The dataset is split into training and validation sets using 
the "splitter.py" program, and images are converted to grayscale with "grayscaler.py." Next, the 
dataset is prepared for YOLO (You Only Look Once) training by defining dataset paths in a 
configuration file ("dataset.yaml"). The training process is initiated, and performance data is extracted. 
Finally, real-world testing is conducted using "predictor.py" to validate the results. The specifics of 
each process are outlined in the following section. 

B. Dataset Preparation 
The first step involved recording the object (soft pneumatic actuator) from various angles with 

different bending angles: 0°, 60°, 70°, 80°, and 90°. The recording was performed using an external 
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camera (JETE HD) and OBS Studio software. Each video had a duration of approximately one 
minute for each bending angle variation (Figure 1). 

 
Fig. 1.  Video recording of various bending angles. 

C. Dataset Preprocessing: Cropping 
The five resulting videos were cropped using ShotCut software. Cropping focused on creating a 

box containing only the object, with the background outside the box automatically turned black 
(Figure 2). This cropping was done manually, adjusting to the object's position in the video, which 
was naturally unstable. Additionally, irrelevant parts of the video, such as when the object moved 
out of the camera’s frame, were cut, leaving video durations of approximately 40 seconds. The edited 
videos were rendered with a limit of 10 FPS to optimize the training process. 

 
Fig. 2.  Result of cropping process. 

D. Dataset Preprocessing: Frame Extraction 
The “frame_extractor.py” program was used to extract individual frames from the videos, 

excluding black areas. This process generated .jpg images for each frame, containing only the object. 
The same process was repeated for all videos. The extracted frames were then divided into five 
classes based on their bending angle variation. The file naming convention was automatically 
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generated, starting with “0_0000.jpg” for the first frame of the first class and ending with 
“90_0442.jpg” for the last frame of the last class. The class distribution and the number of datasets 
were listed in Table 1, which resulted in a total of 2212 datasets. 

Table 1.  Number of datasets for each angle 

No Angle (°) Number of Datasets 

1 0 446 

2 60 439 

3 70 433 

4 80 451 

5 90 443 

 

E. Dataset Preprocessing: Annotation File 
Frame annotation process is summarised in Figure 3. YOLO requires annotations for each dataset, 

which are stored in .txt files with names matching their corresponding dataset files. The annotation 
format used is: “class_id x_centre y_centre width height.” Here, the `class_id` is an index number 
representing the dataset’s class, where 0 corresponds to 0°, 1 to 60°, 2 to 70°, 3 to 80°, and 4 to 90°. 
The `x_centre` and `y_centre` denote the normalized coordinates (on a scale from 0 to 1) of the 
bounding box center. Since all datasets underwent prior editing, these values are set to 0.5. 
Meanwhile, the ̀ width` and ̀ height` represent the normalized dimensions of the bounding box, which 
are set to 1 for all files. 

For example, in the first dataset of the first class, the image file is named “0_0000.jpg,” and its 
corresponding annotation file is named “0_0000.txt.” The content of the annotation file is “0 0.5 0.5 
1.0 1.0.” Similarly, for the last dataset of the last class, the image file is named “90_0442.jpg,” with 
the annotation file named “90_0442.txt,” containing the annotation “4 0.5 0.5 1.0 1.0.” The 
generation of these annotation files was automated using a program called “annotator.py.” 

F. Dataset Preprocessing: Training and Validation Dataset 
All datasets were randomly split into two groups: training datasets and validation datasets, with a 

ratio of 3:1. The training dataset was used for model training, while the validation dataset was used 
for performance evaluation metrics such as accuracy and precision. The datasets were separated into 
two directories: “_train” for the training dataset and “_valid” for the validation dataset. Each 
directory contained five folders, one for each class, with 1657 and 555 datasets respectively. This 
process was automated using the “splitter.py” program. 

G. Dataset Preprocessing: Gray scaling 
The next step applied a grayscale filter to the dataset images (Figure 4). This enhanced model 

performance by eliminating lighting factors, allowing the model to focus solely on the object’s shape. 
The “grayscaler.py” program automatically converted colored images to grayscale without altering 
their location or filename, maintaining the dataset’s directory structure. 
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Fig. 3.  Flowchart of annotation process. 

 
Fig. 4.  Grayscale filter image. 
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H. YOLO Environment Setup 
This step was divided into three parts. First, a Python-based environment for YOLO training was 
prepared by installing necessary modules, including PyTorch and Ultralytics. YOLOv5 was selected 
as the version. Next, the dataset directory was imported into the environment. Finally, a 
“dataset.yaml” file was created to define the dataset’s folder paths and class distribution. 

I. Machine learning program code 
1) Frame Extractor 
In this program, a looping is controlled by an if-else condition (Figure 5) to check whether cv2 

(OpenCV) can still read frames from the video. The looping continues as long as cv2 detects frames. 
When the looping reaches the last frame of the video, on the next iteration, cv2 will no longer detect 
any frames, causing the loop to stop. 

 
Fig. 5.  If-else condition. 

Within the looping, the program creates a mask to eliminate all black pixels (background) in the 
frame. The RGB value of black is (0, 0, 0), and the mask captures pixels with RGB values ranging 
from (1, 1, 1) to (255, 255, 255). Once the mask is created, contours are generated in the masked area 
using code in Figure 6. The frame is then cropped, retaining only the image within the contours. 

 
Fig. 6.  Masking and contour code. 

The resulting image is saved in a predefined output folder. The file format is 
"class_count:04d.jpg". The "count:04d" format specifies that the count (numbering variable) is 
written in four digits, starting from 0000, 0001, 0002, and so on. The count value increments by one 
in each iteration. 

2) Annotator 
The first step is creating a dictionary where the keys are the names of class folders, and the values 

are variations of angles as integers (Figure 7). 

 
Fig. 7. Class folders. 

Looping starts with each class in the dataset folder and continues into a deeper loop for each 
image in the class folder. For each image, a new variable is created to store the annotation file name 
(identical to the image name but with a .txt extension) and another variable to store its path. The text 
file is then filled with annotation data, following the format explained in the process description 
(Figure 8). The content is categorized based on the class where the file is located. 
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Fig. 8. Annotation file name 

3) Splitter 
The first step is defining paths for the dataset folder (overall), training dataset folder, and 

validation dataset folder. Then, a train_split variable is defined as an integer with a value of 0.75. 
For each class, a list is created containing all the files in the class, collecting each image and its 
annotations, shuffling all the files, and storing them in a zip. 

Next, the files are divided with a 3:1 ratio (3 for training and 1 for validation) based on train_split. 
First, a split_index variable is created to determine the 0.75 position in the dataset (Figure 9). The 
training dataset includes all files to the left of the split_index (including split_index), while the 
validation dataset includes all files to the right of the split_index. 

 
Fig. 9.  Splitter code 

The final step is moving the image and annotation files into their respective folders. Classes are 
no longer separated at this stage. All files from all classes are grouped in the same folder for both 
training and validation. 

4) Grayscale converts 
After defining the paths for the training and validation folders, the loop begins. The program 

processes only .jpg files. These files are read and converted to grayscale using OpenCV (Figure 10). 
Then, the old (coloured) file is replaced with the new (grayscale) file. 

 
Fig. 10.  Grayscale converter 

5) Predictor 
After loading the AI model trained using PyTorch via ultralytics/yolov5 into a “model” variable, 

the next step is activating video capture using OpenCV and entering the looping (Figure 11). In the 
looping, OpenCV reads frames. If an issue occurs, such as an incorrect camera port, a damaged 
camera, or an error preventing OpenCV from capturing frames, the looping stops automatically, and 
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the program terminates. Otherwise, the looping continues until interrupted by pressing the "q" key 
or forcibly stopping the program. 

After reading a frame, OpenCV converts it to grayscale to match the data used for training the 
model. The model's prediction output provides confidence values for each class in the frame. Each 
class has its value, but the selected class is the one with the highest confidence, provided it surpasses 
the detection threshold. For example, when the camera is directed at an object forming a 60° angle, 
the 60° class will have the highest confidence and be selected. However, if no object is captured by 
the camera, all class values fall below the threshold, and the model considers no object detected, 
resulting in no class being chosen. 

 
Fig. 11. Loading model 

A new frame is then created based on the initial frame, with an added box indicating the object's 
location and the class selected by the model. OpenCV displays this frame on the screen. The process 
repeats very quickly (depending on the laptop and camera performance), presenting real-time 
prediction results. 

III. Result and Discussion 

A. Model Training 
The training process utilized parameters detailed in Table 2, requiring approximately four hours 

to complete, depending on the computer's performance and the selected parameters. Following the 
training, the model's performance was evaluated across various metrics, illustrated in Figure 12. 

Table 2.  Parameters used in training process. 

No Parameters Value 

1 Image size 640 

2 Batch 32 

3 Epochs 10 

4 Initial weights yolov5s.pt 

 

The Training Box Loss, which measures the error in predicting bounding box positions and sizes, 
achieved a low value of 0.76%, indicating good accuracy. The Training Object Loss, reflecting the 
error in object detection within prediction boxes, was 0.51%, demonstrating effective object-
background differentiation. Additionally, the Training Class Loss, which captures classification 
errors of objects during training, reached 1.8%, signifying satisfactory accuracy. Precision, a measure 
of the model's ability to avoid false positives, was 70%, while Recall, indicating the ability to detect 
all objects, achieved an impressive 99.1%. 

Further evaluation showed that the Mean Average Precision (mAP) at an Intersection over Union 
(IoU) threshold of 0.5 was 86.42%, and the mAP across IoU thresholds from 0.5 to 0.95 was 84.35%, 
highlight the model's consistent accuracy in object detection under varying conditions. On validation 
datasets, the Validation Box Loss, representing errors in bounding box predictions, was 0.25%, and 
the Validation Object Loss, indicating detection errors, was 0.22%. The Validation Class Loss, 
capturing classification errors during validation, was recorded at 0.68%. Finally, the learning rates, 
represented as x/lr0, x/lr1, and x/lr2 for optimizer components, ensured optimal parameter updates 
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during training, achieving a value of 0.2%. These results collectively highlight the model's robustness 
and accuracy in detecting and classifying objects. 

 

 
Fig. 12. Model’s performance results. 

B. Model Testing 
The testing process was conducted using the “predictor.py” program to validate the results. The 

program captured video in real time, converted video frames to grayscale, and applied the trained 
model to detect and classify objects (soft pneumatic actuators) based on their bending angles. Real-
time detection screenshots were analyzed as shown in Figure 13, showing detected classes (actuator 
angles) and their confidence values (0 to 1 range) in the top-left corner of the bounding box. In cases 
where YOLO detected more than one class simultaneously, the class with the highest confidence 
value was displayed prominently. 

 
Fig. 13. Real-time detection of SPA in different condition: (a) 0° with confidence value of 0.33; (b) 60° with 

confidence value of 0.26; (c) 70° with confidence value of 0.31; (d) 80° with confidence value of 0.27; 
(e) 90° with confidence value of 0.35. 
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IV. Conclusion 
This study develops a machine learning framework to detect the bending angle of soft pneumatic 

actuators (SPAs) using image data. A curated dataset of SPAs under varying actuation pressures, 
with labelled bending angles, forms the basis for training a YOLO-based regression model designed 
to predict bending angles from images. The model's performance, evaluated using established 
metrics, demonstrates its effectiveness and potential for practical applications. 

The process involves recording videos of SPAs from multiple angles with rotational variations, 
editing the videos to replace the background with black, and extracting frames with a Python 
program. Non-black pixels are isolated, and annotations for training are generated. The dataset is 
then split into training and validation sets, and images are converted to grayscale with. The dataset 
is prepared for YOLO training by defining paths in a configuration file. Finally, training is conducted, 
and performance metrics are analysed. 

The training results demonstrate that the model is highly effective in detecting and classifying 
objects, with strong performance across multiple metrics. The low training and validation losses, 
including box, object, and class losses, indicate the model's high accuracy in predicting bounding 
box positions, distinguishing objects from the background, and classifying objects correctly. The 
high recall of 99.1% reflects the model's exceptional ability to detect nearly all objects, while the 
precision of 70% shows moderate success in minimizing false positives. 

The mAP scores, particularly 86.42% at an IoU threshold of 0.5 and 84.35% across a range of 
thresholds from 0.5 to 0.95, highlight the model's consistent accuracy in object detection under 
varying conditions. Additionally, the optimized learning rates contributed to efficient parameter 
updates during training, ensuring convergence without overfitting. Overall, the model demonstrates 
a balance between accuracy, robustness, and efficiency, making it well-suited for applications 
requiring reliable SPA’s bending angle detection and classification. 
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