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ARTICLE INFO ABSTRACT
Article history: The bending angle of soft pneumatic actuator (SPA) is a critical
Published parameter influencing their reliability and effectiveness across various

applications. Conventional measurement methods are often labor-
intensive and impractical for experiments requiring multiple trials,
creating a need for efficient, non-invasive techniques. This study
proposes a machine learning framework leveraging YOLO (You Only
Look Once) models to detect SPA bending angles from image data,
eliminating the need for additional hardware. A comprehensive
dataset of SPAs under varying actuation pressures, with meticulously
labelled bending angles, was curated to train a YOLO-based
regression model. The results highlight the model's strong

Keywords: performance, achieving a recall of 99.1%, precision of 70%, and mean
Soft Pneumatic Actuator average precision (mAP) scores of 86.42% (IoU 0.5) and 84.35% (IoU
Soft Robot 0.5-0.95). Low training and validation losses indicate high accuracy
Python in bounding box predictions, object-background differentiation, and
Machine Learning object classification. Optimized learning rates ensured efficient
Angle Measurement parameter updates, achieving convergence without overfitting. The

proposed framework demonstrates a robust balance between
accuracy, robustness, and efficiency, making it a practical solution for
reliable SPA bending angle detection in real-world applications. This
study underscores the potential of machine learning-driven techniques
to streamline SPA characterization, offering a scalable and non-
invasive alternative to traditional methods.

Copyright © 2025 by the Authors.

I. Introduction

Soft pneumatic actuators (SPAs) have garnered significant attention in recent years due to their
inherent flexibility, compliance, and adaptability [1], which make them ideal for applications in
robotics [2], healthcare devices [3], and assistive devices [4]. Unlike traditional rigid actuators, SPAs
can safely interact with delicate objects [5] and conform to complex surfaces [6], enabling innovative
solutions in fields such as soft robotics and wearable devices [7]. Despite their potential, accurately
quantifying and controlling the bending motion of SPAs remains a critical challenge, as their behavior
is influenced by nonlinear material properties [8], geometric design [9], and actuation pressures [10].

One critical aspect of SPA characterization is the measurement of bending angle performance,
which directly impacts their reliability and efficacy in various applications [11]. Precise quantification
of the bending angle is crucial to ensure consistent and predictable operation. Conventional methods
for angle measurement often involve manual procedures [12], which are not only labor-intensive but
also impractical for experiments requiring multiple trials. Another advance method is by
implementing external sensors such as flex sensors [13] or strain sensors [14]. While effective, these
methods can introduce complexities such as fabrication difficulties and increased system cost. As a
result, there is a growing interest in non-invasive, data-driven techniques that leverage machine
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learning (ML) to infer the bending angle from image or sensor data without requiring additional
hardware.

Machine learning has established itself as a transformative tool in addressing complex problems
by capturing intricate, nonlinear relationships within data [15]. Unlike traditional methods, which
often rely on predefined assumptions and linear models, machine learning algorithms adapt to data
patterns, uncovering hidden relationships and providing robust predictions [16]. Specifically,
convolutional neural networks (CNNs) have emerged as a standout technique in image-based
applications due to their ability to automatically learn hierarchical feature representations directly
from raw image data [17]. This capability is particularly advantageous in tasks requiring high accuracy
in feature extraction and regression, such as predicting continuous variables, where CNNs excel in
identifying subtle variations and spatial patterns in images [18].

In practical applications, machine learning-based image processing has been successfully
implemented in diverse fields. For instance, in healthcare, CNNs have enabled breakthroughs in
disease detection, such as identifying skin conditions like melanoma, psoriasis, and eczema [19].
These systems analyse large datasets of skin images, learning to distinguish between healthy and
diseased tissues based on nuanced visual features. Similarly, in agriculture, machine learning has been
used to detect diseases in crops such as corn by analysing images of leaves and identifying symptoms
like discoloration or texture changes caused by fungal infections or pest damage [20]. In engineering,
CNNs have been employed for crack [21] and fracture detection [22] in materials and infrastructure
by processing high-resolution images of surfaces.

This study focuses on developing a machine learning framework to detect the bending angle of
SPAs using image data. Building upon the foundational principles of CNNs, YOLO (You Only Look
Once) models have been developed to perform object detection and classification with remarkable
efficiency. YOLO's ability to predict bounding boxes and object classes simultaneously offers an
optimized framework for tasks that require real-time performance. By utilizing CNN-based YOLO
models, the proposed framework aims to achieve robust angle prediction across various actuation
pressures.

In this study, a comprehensive dataset of SPAs under varying actuation pressures was curated, with
corresponding bending angles meticulously labelled. A YOLO-based regression model was designed,
trained, and optimized to predict the bending angle from images. Finally, the proposed model was
evaluated against established metrics, demonstrating its efficacy and potential for real-world
applications.

By addressing the challenges associated with SPA angle detection through a CNN and YOLO-
based approach, this study contributes to advancing in soft robotics and provides a foundation for
further integration of data-driven methods in the field.

II. Method

A. Machine learning process

The machine learning process begins with recording a soft pneumatic actuator from various angles
with specific rotation variations. The recorded videos are edited to replace the background with black,
followed by frame extraction using a Python program ("frame_extractor.py") to isolate non-black
pixels. An annotation program ("annotator.py") automatically generates .txt files for each image,
providing necessary annotations for training. The dataset is split into training and validation sets using
the "splitter.py" program, and images are converted to grayscale with "grayscaler.py." Next, the
dataset is prepared for YOLO (You Only Look Once) training by defining dataset paths in a
configuration file ("dataset.yaml"). The training process is initiated, and performance data is extracted.
Finally, real-world testing is conducted using "predictor.py" to validate the results. The specifics of
each process are outlined in the following section.

B. Dataset Preparation

The first step involved recording the object (soft pneumatic actuator) from various angles with
different bending angles: 0°, 60°, 70°, 80°, and 90°. The recording was performed using an external
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camera (JETE HD) and OBS Studio software. Each video had a duration of approximately one
minute for each bending angle variation (Figure 1).

Fig. 1. Video recording of various bending angles.

C. Dataset Preprocessing: Cropping

The five resulting videos were cropped using ShotCut software. Cropping focused on creating a
box containing only the object, with the background outside the box automatically turned black
(Figure 2). This cropping was done manually, adjusting to the object's position in the video, which
was naturally unstable. Additionally, irrelevant parts of the video, such as when the object moved
out of the camera’s frame, were cut, leaving video durations of approximately 40 seconds. The edited
videos were rendered with a limit of 10 FPS to optimize the training process.

4 980_cropped.mp4 - VIC media player - o8 X
Media Playback Audio Video Subtitle Tools View Help

Fig. 2. Result of cropping process.

D. Dataset Preprocessing: Frame Extraction

The “frame extractor.py” program was used to extract individual frames from the videos,
excluding black areas. This process generated .jpg images for each frame, containing only the object.
The same process was repeated for all videos. The extracted frames were then divided into five
classes based on their bending angle variation. The file naming convention was automatically
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generated, starting with “0_0000.jpg” for the first frame of the first class and ending with
“90 _0442.jpg” for the last frame of the last class. The class distribution and the number of datasets
were listed in Table 1, which resulted in a total of 2212 datasets.

Table 1. Number of datasets for each angle

No Angle (°) Number of Datasets
1 0 446
2 60 439
3 70 433
4 80 451
5 90 443

E. Dataset Preprocessing: Annotation File

Frame annotation process is summarised in Figure 3. YOLO requires annotations for each dataset,
which are stored in .txt files with names matching their corresponding dataset files. The annotation
format used is: “class_id x_centre y_centre width height.” Here, the "class id" is an index number
representing the dataset’s class, where 0 corresponds to 0°, 1 to 60°, 2 to 70°, 3 to 80°, and 4 to 90°.
The "x_centre’ and 'y _centre’ denote the normalized coordinates (on a scale from 0 to 1) of the
bounding box center. Since all datasets underwent prior editing, these values are set to 0.5.
Meanwhile, the “width® and “height’ represent the normalized dimensions of the bounding box, which
are set to 1 for all files.

For example, in the first dataset of the first class, the image file is named “0_0000.jpg,” and its
corresponding annotation file is named “0_0000.txt.” The content of the annotation file is “0 0.5 0.5
1.0 1.0.” Similarly, for the last dataset of the last c/ass, the image file is named “90_0442.jpg,” with
the annotation file named “90 0442.txt,” containing the annotation “4 0.5 0.5 1.0 1.0.” The
generation of these annotation files was automated using a program called “annotator.py.”

F. Dataset Preprocessing: Training and Validation Dataset

All datasets were randomly split into two groups: training datasets and validation datasets, with a
ratio of 3:1. The training dataset was used for model training, while the validation dataset was used
for performance evaluation metrics such as accuracy and precision. The datasets were separated into
two directories: “ train” for the training dataset and “ valid” for the validation dataset. Each
directory contained five folders, one for each class, with 1657 and 555 datasets respectively. This
process was automated using the “splitter.py” program.

G. Dataset Preprocessing: Gray scaling

The next step applied a grayscale filter to the dataset images (Figure 4). This enhanced model
performance by eliminating lighting factors, allowing the model to focus solely on the object’s shape.
The “grayscaler.py” program automatically converted colored images to grayscale without altering
their location or filename, maintaining the dataset’s directory structure.
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Fig. 4. Grayscale filter image.
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H. YOLO Environment Setup

This step was divided into three parts. First, a Python-based environment for YOLO training was
prepared by installing necessary modules, including PyTorch and Ultralytics. YOLOVS was selected
as the version. Next, the dataset directory was imported into the environment. Finally, a
“dataset.yaml” file was created to define the dataset’s folder paths and class distribution.

I Machine learning program code

1) Frame Extractor

In this program, a looping is controlled by an if-else condition (Figure 5) to check whether cv2
(OpenCV) can still read frames from the video. The looping continues as long as cv2 detects frames.
When the looping reaches the last frame of the video, on the next iteration, cv2 will no longer detect
any frames, causing the loop to stop.

while True:
t, frame = p.read()
if not
break

Fig. 5. If-else condition.

Within the looping, the program creates a mask to eliminate all black pixels (background) in the
frame. The RGB value of black is (0, 0, 0), and the mask captures pixels with RGB values ranging
from (1, 1, 1) to (255, 255, 255). Once the mask is created, contours are generated in the masked area
using code in Figure 6. The frame is then cropped, retaining only the image within the contours.

sk = cv2.inRange(frame, (1, 1, 1), (255, 255, 255))
[ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Fig. 6. Masking and contour code.

The resulting image is saved in a predefined output folder. The file format is
"class_count:04d.jpg". The "count:04d" format specifies that the count (numbering variable) is
written in four digits, starting from 0000, 0001, 0002, and so on. The count value increments by one
in each iteration.

2) Annotator
The first step is creating a dictionary where the keys are the names of class folders, and the values

are variations of angles as integers (Figure 7).

= {
'g0_cropped_frame': 0,
'g60_cropped_frame': 60,
'g70_cropped_frame': 70,
'g80_cropped_frame': 80,
'g90_cropped_frame': 90,

Fig. 7.Class folders.

Looping starts with each class in the dataset folder and continues into a deeper loop for each
image in the class folder. For each image, a new variable is created to store the annotation file name
(identical to the image name but with a .txt extension) and another variable to store its path. The text
file is then filled with annotation data, following the format explained in the process description
(Figure 8). The content is categorized based on the class where the file is located.
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with open(annotation_file_path, 'w') as f

if angle == .

f.write("0 0.5 0.5 1.0 1.0\n")
elif angle == 60:

f.write("1 0.5 0.5 1.0 1.0\n")
elif angle == 70:

f.write("2 0.5 0.5 1.0 1.0\n")
elif angle == 80:

f.write("3 0.5 0.5 1.0 1.0\n")
elif angle == 90:

f.write("4 0.5 0.5 1.0 1.0\n")
Fig. 8. Annotation file name

3) Splitter

The first step is defining paths for the dataset folder (overall), training dataset folder, and
validation dataset folder. Then, a train_split variable is defined as an integer with a value of 0.75.
For each class, a list is created containing all the files in the class, collecting each image and its
annotations, shuffling all the files, and storing them in a zip.

Next, the files are divided with a 3:1 ratio (3 for training and 1 for validation) based on train_split.
First, a split_index variable is created to determine the 0.75 position in the dataset (Figure 9). The
training dataset includes all files to the left of the split index (including split index), while the
validation dataset includes all files to the right of the split_index.

split_index = int(len(images) * train_split)

train_image: }=":1‘v[5‘17;"‘ index] ‘

Fig. 9. Splitter code

The final step is moving the image and annotation files into their respective folders. Classes are
no longer separated at this stage. All files from all classes are grouped in the same folder for both
training and validation.

4) Grayscale converts

After defining the paths for the training and validation folders, the loop begins. The program
processes only .jpg files. These files are read and converted to grayscale using OpenCV (Figure 10).
Then, the old (coloured) file is replaced with the new (grayscale) file.

for filename in os.listdir(directory):
if filename.endswith(".jpg"):
img_path = os.path.join(directory, filename)
= cv2.imread(img_path)
jray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imwrite(img_path, gray_img)

Fig. 10. Grayscale converter

5) Predictor

After loading the Al model trained using PyTorch via ultralytics/yolov5 into a “model” variable,
the next step is activating video capture using OpenCV and entering the looping (Figure 11). In the
looping, OpenCV reads frames. If an issue occurs, such as an incorrect camera port, a damaged
camera, or an error preventing OpenCV from capturing frames, the looping stops automatically, and
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the program terminates. Otherwise, the looping continues until interrupted by pressing the "q" key
or forcibly stopping the program.

After reading a frame, OpenCV converts it to grayscale to match the data used for training the
model. The model's prediction output provides confidence values for each class in the frame. Each
class has its value, but the selected class is the one with the highest confidence, provided it surpasses
the detection threshold. For example, when the camera is directed at an object forming a 60° angle,
the 60° class will have the highest confidence and be selected. However, if no object is captured by
the camera, all class values fall below the threshold, and the model considers no object detected,
resulting in no class being chosen.

= model(input_frame)
te ] > = np.squeeze(results.render())
v2.imshow( 'YOLO Real-Time Detection', ar : me )

Fig. 11. Loading model

A new frame is then created based on the initial frame, with an added box indicating the object's
location and the class selected by the model. OpenCV displays this frame on the screen. The process
repeats very quickly (depending on the laptop and camera performance), presenting real-time
prediction results.

II1. Result and Discussion

A. Model Training

The training process utilized parameters detailed in Table 2, requiring approximately four hours
to complete, depending on the computer's performance and the selected parameters. Following the
training, the model's performance was evaluated across various metrics, illustrated in Figure 12.

Table 2. Parameters used in training process.

No Parameters Value
1 Image size 640
2 Batch 32
3 Epochs 10
4 Initial weights yolov5s.pt

The Training Box Loss, which measures the error in predicting bounding box positions and sizes,
achieved a low value of 0.76%, indicating good accuracy. The Training Object Loss, reflecting the
error in object detection within prediction boxes, was 0.51%, demonstrating effective object-
background differentiation. Additionally, the Training Class Loss, which captures classification
errors of objects during training, reached 1.8%, signifying satisfactory accuracy. Precision, a measure
of the model's ability to avoid false positives, was 70%, while Recall, indicating the ability to detect
all objects, achieved an impressive 99.1%.

Further evaluation showed that the Mean Average Precision (mAP) at an Intersection over Union
(IoU) threshold of 0.5 was 86.42%, and the mAP across loU thresholds from 0.5 to 0.95 was 84.35%,
highlight the model's consistent accuracy in object detection under varying conditions. On validation
datasets, the Validation Box Loss, representing errors in bounding box predictions, was 0.25%, and
the Validation Object Loss, indicating detection errors, was 0.22%. The Validation Class Loss,
capturing classification errors during validation, was recorded at 0.68%. Finally, the learning rates,
represented as x/1r0, x/Ir1, and x/Ir2 for optimizer components, ensured optimal parameter updates
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during training, achieving a value of 0.2%. These results collectively highlight the model's robustness

and accuracy in detecting and classifying objects.
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B. Model Testing

The testing process was conducted using the “predictor.py” program to validate the results. The
program captured video in real time, converted video frames to grayscale, and applied the trained
model to detect and classify objects (soft pneumatic actuators) based on their bending angles. Real-
time detection screenshots were analyzed as shown in Figure 13, showing detected classes (actuator
angles) and their confidence values (0 to 1 range) in the top-left corner of the bounding box. In cases
where YOLO detected more than one class simultaneously, the class with the highest confidence
value was displayed prominently.

train/obj_loss
0.0325

—e— results

smooth  0.0300
0.0275
0.0250
0.0225
0.0200

0.0175

5

val/obj_loss

0.012
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5

Fig. 12. Model’s performance results.
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Fig. 13. Real-time detection of SPA in different condition: (a) 0° with confidence value of 0.33; (b) 60° with
confidence value of 0.26; (c) 70° with confidence value of 0.31; (d) 80° with confidence value of 0.27;
(e) 90° with confidence value of 0.35.
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IV. Conclusion

This study develops a machine learning framework to detect the bending angle of soft pneumatic
actuators (SPAs) using image data. A curated dataset of SPAs under varying actuation pressures,
with labelled bending angles, forms the basis for training a YOLO-based regression model designed
to predict bending angles from images. The model's performance, evaluated using established
metrics, demonstrates its effectiveness and potential for practical applications.

The process involves recording videos of SPAs from multiple angles with rotational variations,
editing the videos to replace the background with black, and extracting frames with a Python
program. Non-black pixels are isolated, and annotations for training are generated. The dataset is
then split into training and validation sets, and images are converted to grayscale with. The dataset
is prepared for YOLO training by defining paths in a configuration file. Finally, training is conducted,
and performance metrics are analysed.

The training results demonstrate that the model is highly effective in detecting and classifying
objects, with strong performance across multiple metrics. The low training and validation losses,
including box, object, and class losses, indicate the model's high accuracy in predicting bounding
box positions, distinguishing objects from the background, and classifying objects correctly. The
high recall of 99.1% reflects the model's exceptional ability to detect nearly all objects, while the
precision of 70% shows moderate success in minimizing false positives.

The mAP scores, particularly 86.42% at an IoU threshold of 0.5 and 84.35% across a range of
thresholds from 0.5 to 0.95, highlight the model's consistent accuracy in object detection under
varying conditions. Additionally, the optimized learning rates contributed to efficient parameter
updates during training, ensuring convergence without overfitting. Overall, the model demonstrates
a balance between accuracy, robustness, and efficiency, making it well-suited for applications
requiring reliable SPA’s bending angle detection and classification.
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