Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic

Amsar Yunan ^{a,1}, Muhammad Ali^b

^{a,b,} Department of Computer Engineering, Polytechnic of South Aceh, Tapaktuan Indonesia ^lamsar@poltas.ac.id</sup>

ARTICLE INFO	ABSTRACT
Article history: Accepted	The selection of students who excel academically is a measure of education quality in an educational institution. In the implementation of education, student achievement becomes a measure of academic success at the institution. Achievement results from hard work by following the rules given by a particular person or institution with specific criteria and conditions to determine if someone is eligible to
Keywords: Decision Making, Achievements, Fuzzy, Mamdani, Sugeno.	be chosen as an award recipient. This research uses the Mandani Fuzzy method or Fuzzy inference system. Sugeno Fuzzy designed this decision-making system to develop the decision results from the rules compiled using Matlab software for testing. The South Aceh Polytechnic holds special student elections every year. The selection of students with achievements that are carried out every year only focuses on the GPA value in academic achievement without looking at the determining factors which are more precise. In the research that will be conducted, the selection must meet the eligibility criteria as a student who gets an award or as an outstanding student at the South Aceh Polytechnic involving variables in the Cumulative Achievement Index, Final Project value, Extracurricular, and Attendance. Research is expected to be a tool in the selection process for candidate participants who complete the selection of outstanding students at the South Aceh Polytechnic. So, relevant departments in universities can determine the eligibility of prospective students as award recipients as students with the best achievement scores by considering the relevant determining factors. The expected output using the Mamdani and Sugeno fuzzy method can become an intellectual property system. This system can be selected as a guideline by the South Aceh Polytechnic academic for determining outstanding students. The research results show that the level of truth is 86.82% for the Mamdani method, while the implementation of Sugeno Fuzzy logic is obtained a level of reality of 71.88%.
	Copyright © 2020 Politeknik Aceh Selatan. All rights reserved

I. Introduction

The selection of students who excel academically is a measure of education quality in an educational institution [1]. Achievement results from hard work by following the rules given by a person or institution with specific criteria to determine if someone deserves to be selected as an award recipient. If it is related to higher education, the achievement is when a student can excel in college and other academic skills, which are the determining variables for the student being selected as the student with the best academic achievement [2]. In a study conducted by Laras Purwati Ayuningtias et al. To predict the number of new students in the following year by looking at the number of new students in the previous year, this study uses three fuzzy methods, namely Tsukamoto, Sugeno, and Mamdani fuzzy. The research that has been done obtained the error rate of each way, where the Mamdani Fuzzy method error is 19.76%, Tsukamoto Fuzzy is 39.03%, and Fuzzy Sugeno is 86.41% [3]. Dorteus Lodewyik Rahakbauw also conducted this research using the

Fuzzy Sugeno method. His research on determining the amount produced by a bakery based on the production of the amount of demand and inventory data helped determine the factory's amount of bread. The results obtained a truth level of 86.92165% [4].

Furthermore, research conducted by Eka Mahargiyak et al. Regarding the application of the Sugeno method of Fuzzy Logic for Weather Forecasting Decision Support Systems, this study directs to be able to do weather forecasts by implementing the Sugeno Fuzzy process and can also see and calculate the level of accuracy of the data from the research results. The results show that manual data verification tests and system verification in the excellent category, where manual data verification was 76%, and system data verification tests were 74% [5].

Based on other researchers' research related to decision-making systems, the decisions taken must meet the eligibility criteria as outstanding students for the study to be conducted. Therefore, the South Aceh Polytechnic College, a three-year diploma that produces graduates with skills and skills, is held annually to select outstanding students for those who have completed semester VI (six) and only those who can complete studies for 3 (three) years. The selection of exceptional students is based on the GPA score without looking at other more precise variables, such as non-academic student activities or even collecting several assessment items and determining the average number of the determined items so that each assessment's accuracy is less than optimal. In this study, the selection of high-achieving students must involve variables in the form of Grade Point Average, Final Project Value, Extracurricular, and Attendance. The results of this study serve as guidelines or aids in decision making in determining outstanding students. This decision-making system is designed using tools in the form of a Graphic User Interface (GUI) in Matlab.

II. Theoretical Background

2.1 Fuzzy Logic or Fuzzy Inference System

Fuzzy logic is one of the scientific fields of technology related to the formation of soft computing to sets as input variables will be designed with rules so that a decision can be taken. As illustrated in Figure 1 below:

Figure 1. Mapping the input-output process in fuzzy [6]

It uses fuzzy logic to combine a broad set of fundamental indicators and then calculates a numerical value of sustainability for many hands to draw a logical conclusion [7]. As mentioned earlier, Fuzzy is a component of soft computing formation. In terms of this, Fuzzy logic can also be interpreted as a vague or vague decision. A value in this fuzzy can be either broad or false simultaneously because, in the Fuzzy term, the degree of membership has an interval of 0 (zero) to 1 (one). The person who first introduced fuzzy theories in scientific studies was Prof. Lotfi Zadeh in 1965. Prof. Lotfi Zadeh, who is currently a reference for many researchers, said that set theory plays an essential role in determining the membership function or a term known in fuzzy, namely the degree of membership [8]. The Mamdani Fuzzy method is a fuzzy inference system because the technique is a combination of each fuzzy rule. The degree of membership is calculated to be defuzzified to get the relevant results in a system [9].

This fuzzy relationship is based on addition and multiplication obtained from vague rules. This solution is offered by fuzzy logic in making decisions from a compiled law, also known as the fuzzy arithmetic model. This Fuzzy relationship turns out to be a solution to the conclusion system so that theoretical and practical results are obtained [10].

2.2 Membership Function

The membership function is a curve that shows the mapping of data input points into its membership value or the degree of membership. This degree of membership has a value range from 0 to 1 [8]. There are several membership functions, such as triangle curve representation and trapezoidal curve representation.

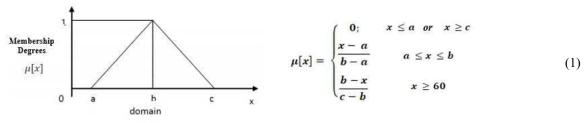


Figure 2. Triangle Curve

Furthermore, the implantation of the trapezoid curve is a combination of the representation of the triangle curve, only if in this curve, some member values are 1.

$$\underbrace{\operatorname{Members}}_{\substack{\mu[x]\\ \mu[x]\\ 0}} \int_{0}^{1} \int_{a}^{b} \int_{b}^{b} \int_{c}^{c} \int_{d}^{d} \int_{x}^{d} \int_{x}^{d} \int_{x}^{d} \int_{a}^{d} \int_{a}^{d}$$

Figure 3. Trapezium curve

2.3 Fuzzy Mamdani

Mamdani Fuzzy logic is a scientific theory known as Max-Min. The first time to introduce this theory was Ebrahim Mamdani in 1975. The fuzzy Mandani started from creating fuzzy sets, designing rules that are often known as rules or other terms. Application of implication functions that become benchmarks for decision making, the composition of management, and defuzzification [11].

In the Mamdani fuzzy method, there are several steps as follows:

- 1. Determine the fuzzy set used First, determine a fuzzy set and decide what variables are included in the input and output variables.
- 2. Forming the implication function

The implication function uses the AND operator or the OR operator. If using AND, then the minimum role is taken. On the other hand, if OR, the maximum function is taken, then it is connected with the THEN command for the decision to be taken, generally as follows [8]: IF $(x_1 \text{ is } A_1)$ AND $(x_2 \text{ is } A_2)$ AND $(x_3 \text{ is } A_3)$... AND $(x_n \text{ is } A_n)$ THEN y is B.

- Determine rules (the composition of rules) The composition uses the Mamdani composition or the term MAX-MIN as well.
- 4. Defuzzification

Confirmation is a process of defuzzification in each set. Defuzzification is obtained from several fuzzy set variables so that it is connected to the output as the final result obtained is followed up in decision making [12].

2.4 Fuzzy Sugeno

Logical decision-making with the Sugeno method is related and close by drawing conclusions made with the Mamdani method. Mamdani's difference is only in the output where the system is not a Fuzzy set an equation or constant, a technique introduced by Sugeno Kang in 1986 [13]. This Sugeno in its membership function is in Singleton. The membership function has a membership degree of 1 at a single crisp value, while in other crisp matters is 0.

There are two parts to Sugeno's fuzzy model:

- 1. Zero-Order Fuzzy Sugeno Model
 - The following formula is Sugeno's fuzzy form in general in Zero-Order, namely: IF (x1 is A1) \cdot (x2 is A2) $^{\circ}$ (x3 is A3) \cdot \cdot (xN is An) THEN z=k

Where: Ai is the ith Fuzzy set as an antecedent (reason), and k is a constant (emphatic) as a consequence (conclusion).

2. Fuzzy Sugeno Order-1 Model IF (x1 is a1) $^{\circ}$ (x2 is A2) $^{\circ}$... $^{\circ}$ (xn is An) THEN z = p1*x1+...+pn*xn+q, Where: Ai is the ith fuzzy set as an antecedent (reason), $^{\circ}$ is the fuzzy operator (AND or OR), pi is the ith constant, and q is also continuous in consequence.

2.5 Decision support system

A decision support system can be a system that provides data modeling to help make a semistructured decision. That someone will never know the pattern of decision making on decisions received from certain parties cannot be traced with certainty how to produce the decisions given [14]. In this study using Matlab software for testing, the illustration of test design as in Figure 4 below:

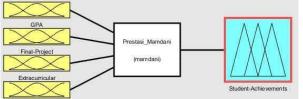


Figure 4. Design using Matlab

In Figure 4 above, the flow of decision making using the fuzzy method is to collect input variables then compile rules to get the final decision. The compilation of the number of rules uses the permutation formula. The permutation is a system of compiling a set of objects arranged in an order that is different from one another without any repetitive arrangements because the permutation sequence is crucial [15].

$$n\mathbf{P}\mathbf{r} = \mathbf{n}^{\mathbf{r}} \tag{3}$$

Where n is the number of objects that can be selected, and r is the number of items specified.

2.6 Mean Percentage Error (MPE)

After the testing process is carried out, calculating the correctness of the tests carried out is then carried out, using either the Mamdani fuzzy logic method or the Sugeno Fuzzy logic method. At the calculation stage, the truth value uses the mean percent error value known as the Mean Percentage Error (MPE) [16].

$$MPE = \frac{\sum_{t=1}^{n} \frac{(Y_t - \bar{Y}_t)}{Y_t} \times 100\%}{n}$$
(4)

In this equation, t = 1 to n indicates the amount of data, Y_t is the original data, \hat{Y}_t is the I observation's predicted value, and n is the amount of data.

III. Method

This research was designed by following the Mamdani and Sugeno fuzzification systems. The work system in this study is as follows:

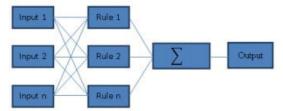


Figure 5. Research Concept Scheme

From the conceptual scheme of this research, the decision-making system is based on input variables. The rules for the testing process are carried out using the fuzzy Mamdani and Sugeno logic methods. The final result is a decision in the form of outstanding students.

The data collection method is by taking data from students in semester VI (six) who have completed three years of study for testing. Data for graduates over three years will not be processed to be included in this decision-making system. Table 1 is the sample data used.

		Table	1. Testing	data	
	Nama			Variable	
No	Name of the student	IPK/ GPA	Final project	Extracurri cular	Attendance
1	Student01	3.38	86.75	73	95.34
2	Student02	3.25	79.58	195	92.85
3	Student03	3.19	79.30	79	90.03
4	Student04	3.71	87.04	156	95.60
5	Student05	3.30	82.00	63	93.80
6	Student06	3.16	85.02	72	90.00
7	Student07	3.15	82.01	86	86.65
8	Student08	2.61	74.56	67	65.40
9	Student09	3.35	86.07	192	93.65
10	Student10	3.57	85.81	126	97.60
11	Student11	3.01	75.00	71	80.00
12	Student12	3.39	88.16	82	90.10
13	Student13	3.09	85.80	65	80.40
14	Student14	2.61	79.10	75	60.80
15	Student15	3.26	85.40	122	84.90
16	Student16	2.95	82.16	67	70.35
17	Student17	3.23	84.00	83	90.20
18	Student18	2.84	80.07	63	76.65
19	Student19	2.85	80.70	66	68.93
20	Student20	2.86	82.36	86	78.70
21	Student21	3.00	82.02	90	80.70
22	Student22	2.89	86.25	50	75.00
23	Student23	3.25	87.06	70	90.80
24	Student24	3.27	86.56	68	83.30
25	Student25	3.38	87.69	144	90.20
26	Student26	3.42	89.96	85	95.52
27	Student27	3.21	85.50	72	90.70
28	Student28	3.25	80.00	98	89.65
29	Student29	3.49	86.45	59	94.70
30	Student30	2.97	83.97	102	80.00
31	Student31	2.94	86.73	49	64.90
32	Student32	3.35	85.48	84	95.30
33	Student33	3.15	87.48	60	85.34
34	Student34	3.10	85.90	74	80.21
35	Student35	2.93	86.88	85	78.50
36	Student36	3.08	85.30	85	87.00
37	Student37	3.33	89.00	42	93.45
38	Student38	3.34	90.30	114	93.33
39	Student39	2.95	86.92	64	70.76
40	Student40	3.07	86.10	40	82.70

Table 1. Testing data

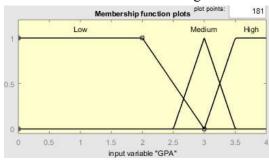
IV. Result And Discussion

A. Set Formation and Implication Function

The formation of this fuzzy set includes four variable parts, including the GPA, Final Project, Extracurricular, and Attendance variables. Each input variable has a linguistic function consisting of three parts: low, medium, and high. In comparison, the output variable has four linguistic functions, namely less, enough, reasonable, and best.

Input	fuzz	zv set	_ The semester of
Variable	Туре	Domain	conversation
_	Low	0 - 3	_
IPK	Medium	2.5 - 3.5	0 - 4
	High	3 - 4	
	Low	0 - 70	
Final Project	Medium	60 - 90	0 - 100
	High	80 - 100	
Extracurricula	Low	0 - 100	
r	Medium	50 - 200	0 - 300
1	High	150 - 300	
Attendance	Low	0 - 60	- 0 - 100
Auchualice	Medium	50 - 90	- 0 - 100

Table 2. Formation of fuzzy sets and their domain


Amsar Yunan & Muhammad Ali (Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic)

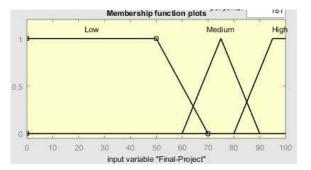
Input	fuzz	The semester of	
Variable	Туре	Domain	conversation
	High	80 - 100	
	Less	0-30	
Outrout	Enough	20 - 60	- 0 100
Output	Good	50 - 90	- 0 - 100
	Best	80 - 100	_

B. Application function Implication of input

The application of the implication function of each input value of each variable can be seen in Figure 6 to Figure 10.

1. Variable IPK / Grade Point Average GPA

Membership function


$$\mu_{LOW}[x] = \begin{cases} \frac{1;}{3-x} & x \le 2\\ \frac{3-x}{0;} & 2 \le x \le 3\\ 0; & x \ge 3 \end{cases}$$
(5)

$$\mu_{Medium}[x] = \begin{cases} \frac{3-2}{1;} & x=3\\ \frac{3,5-x}{3,5-3} & 3 \le x \le 3.5 \end{cases}$$
(6)

$$\mu_{\text{High}}[x] = \begin{cases} \frac{x-3}{3.5-3} & 3 \le x \le 3.5\\ 1; & x \ge 3.5 \end{cases}$$
(7)

Figure 6. Application of GPA implication function

2. Variable Final Project

Membership function

$$\mu_{Low}[x] = \begin{cases} \frac{1:}{70-x} & x \le 50 \quad (8)\\ \frac{70-x}{70-50} & 50 \le x \le 70\\ 0: & x \ge 70 \end{cases}$$

$$\mu_{Medium}[x] = \begin{cases} \frac{x-60}{75-60} & 60 \le x \le 75\\ \frac{1:}{90-x} & x = 75\\ \frac{90-x}{90-75} & 75 \le x \le 90 \end{cases}$$

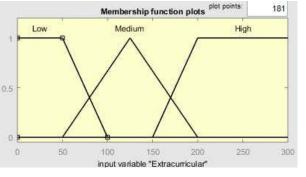
$$\mu_{High}[x] = \begin{cases} \frac{x-80}{95-80} & 80 \le x \le 95\\ \frac{1:}{90-80} & x \ge 95 \end{cases}$$
(10)

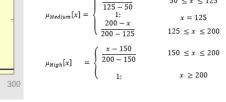
 $x \leq 50$

 $50 \le x \le 100$

 $x \ge 100$

 $50 \leq x \leq 125$


(11)


(12)

(13)

Figure 7. Application of Final Project implication function

3. Variable Extracurricular

 $\frac{1}{100 - x}$

100 - 50 0;

x - 50

Membership function

 $\mu_{Low}[x]$

Figure 8. Application of Extracurricular implication function

4. Variable Attendance

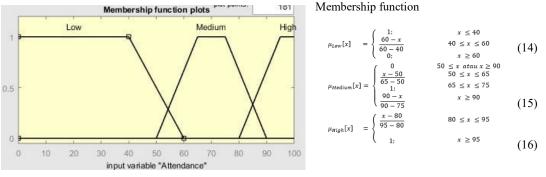


Figure 9. Application of Attendance implication function

The percentage value range of output from research with the Mamdani and Sugeno fuzzy methods is given the recommendation size is 0 - 100% to get the value as a participant of outstanding students. The Mamdani method can be seen in Figure 10 below:

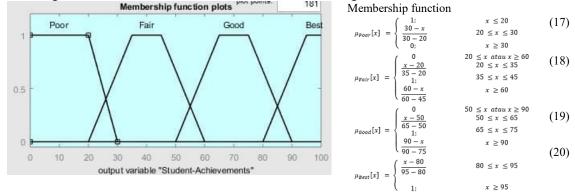


Figure 10. Application of Output implication function

The use of Mamdani and Sugeno methods is almost the same. Only the difference is in the output process. There is no classification for each value to be issued, but in Sugeno, determining the final value uses linear and constant choices. In this test using the continuous option to see the output value by taking the lowest value at the initial output in the form of a value of 0, the middle value between the initial and final values, namely, the category is entirely worth 40 and the Good type is worth 70. The absolute value is taken as the highest output value in the class for the output—best worth 100. The view can be seen in Figure 11 below.

Figure 11. Sugeno fuzzy method output

C. Fuzzy rules applied.

In this research, two methods are used: using the Mamdani fuzzy logic method and Sugeno fuzzy logic. The fuzzy rules are formulated with the fuzzy criteria Low, Enough, Medium, High. With Variable (Variable = 1,2,3,4). The number of these rules of 81 is obtained from equation (2.3). The formula used in this equation is :

$$n\mathbf{P}r = n^{\mathbf{P}} \tag{3}$$

where n is the number of objects that can be selected, and r is the number of items selected. So we get the fuzzy rule total used to be 81 rules by substituting it into the equation: $n^r = 3^4 = 81$.

Amsar Yunan & Muhammad Ali (Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic)

		Tab	le 3. Fuzzy rules						
No		Fuzzy set							
Rules	IPK/GPA	Final Project	Extracurricular	Attendance	(Then)				
1	High	High	High	High	Best				
2	High	High	High	Medium	Best				
11	High	Medium	High	Medium	Good				
12	High	Medium	High	Low	Good				
24	High	Low	Medium	Low	fair				
25	High	Low	Low	High	fair				
80	Low	Low	Low	Medium	Poor				
81	Low	Low	Low	Low	Poor				

The test results with the Graphic User Interface process with Matlab using both Mamdani and Sugeno methods can be seen in Figure 12 and Figure 13 below.

dmin								- 0.3	(💽 Admin								-
nan Depan									: Halaman Depan								
	Tes	ting Data for A	chievi	na Stu	ident Se	lection Pr	ocess			Tes	ting Data for	Achievir	na Stuc	lent Sel	lection Pro	ocess	
Data processing								Fuzzy	Data processing								Fuzzy
		mber Name of The Studer					Output Value Decisic			5tudent ID N 1 1601005	mber Name of The Stud Lesi Fitria	ant IPK/GPA	Final Proj 86.75	ect Extracum 73	cular Attendance 95.34	Output Value Decisic	-
Load Data	1 1601005	Lesi Fitra	3.38	86.75	73	95.34	74.0819 Good 🔨	FIS Editor	Load Data		Satizal	1.38	79.58	195	95.34 92.85	74.9819 Good	FIS Editor
Load Dala	2 1601006	Safrizal	3.25	79.58	195	92.85	83.9655 Good	TIOLUNO	2000 0000							83.9655 Good	THE LONG
Mamdani	3 1601010	Rifky Jannatul Firdaus		79.3	79	90.03	60.3157 Good	MEE D	Sugeno v	3 1601010 4 1601024	Rifly Jannatul Firdar Rizi Andika	3.71	79.3 87.04	79	90.03 95.6	60.3157 Good 92.6279 Best	MF Editor
mamuani	4 1601024	Rizi Andika	3.71	87.04	158	95.6	92.6279 Best	MF Editor		5 1601026	Teouh Pratama	3.3	62	63.3	93.8	62,9685 Good	MF COLO
Process	5 1601026	Teguh Pratama	3.3	82	63.3	93.8	62.9685 Good		Process	5 1601020	Putri Nursita	3.16	85.02	72	90	64,9896 Good	
1100835	6 1601028	Putri Nursita	3.16	85.02	72	90	64,9896 Good	Rule Editor		7 1601020	Satiat	3.15	82.01	88	90	61,4107 Good	Rule Editor
	7 1601030	Safriati	3.15	82.01	86	88.65	61.4107 Good		Combined Graph	3 1601040	Wiki Svahputra	2.61	74.56	67.15	65.4	14.4262 Poor	
Combined Graph	8 1601040	Wilki Syahputra	2.61	74.56	67.15	65.4	14.4262 Poor	Surface	Combined Graph	9 1601144	Rrin Sri Derlanti	3.35	85.07	192	93.65	90.0701 Best	Surface
	9 1601144	Ririn Sri Darlianti	3.35	86.07	192	93.65	90.0701 Best	oundee	22.7	10 1601145	Huswabul Fitri	3.55	85.81	125	97.6	87,4300 Good	-
Rank	10 1601145	Huswetal Fitri	3.57	85.81	126	97.6	87.4300 Good		Rank	11 1602005	Rahmiat	3.01	75	71.45	80	40,5000 Fair	
	11 1602005	Rahmiati	3.01	75	71.45	80	40.6000 Fair		1	12 1602010	Hida Fain Yusna	3.39	88.16	82	90.1	19,8005 Good	
Export	12 1602010	Hilda Fajri Yusna	3.39	88.16	82	90.1	79.8005 Good		Export	13 1602010	StiReiseh	3.09	65.8	65	80.4	60.4558 Good	
andhout	13 1602018	Sit Raisah	3.09	85.8	65	80.4	60.4558 Good			14 1682019	M. Duski	2.61	79.1	75	60.8	14.4262 Poor	
Reset	14 1602019	M. Duski	2.61	79.1	75	60.8	14.4262 Poor		Reset	15 1602028	Ulga Ahva	3.26	85.4	122	84.9	75,0458 Good	
Reset	15 1602028	Ulga Atya	3.26	85.4	122	84.9	75.0458 Good			16 1602033	Tesku Dinas Renal I		82.16	87	70.35	44,0337 Fair	
	16 1602033	Teuku Dimas Renal Li.		82.16	67	70.35	44.0337 Fair			17 1602036	Vubarrisd Zulfa	323	84	81	90.2	68,8769 Good	
	17 1602036	Muhammad Zulfa	3.23	84	83	90.2	68.8769 Good			18 1682037	Habibi	2.84	60.07	63.3	76.65	32.5510 Fair	
	18 1602037	Habibi	2.84	80.07	63.3	76.65	32.5510 Fair			19 1602045	Heriza	2.85	50.7	86	68.93	34,6706 Fair	
	19 1602045	Heriza	2.85	80.7	66	68.93	34.6706 Fair			20 1602050	Brul Walkheis	2.86	62.36	86	78.7	39,4158 Fair	
	20 1602050	Birul Waldhein	2.86	82.36	86	78.7	39.4158 Fair			21 1603004	Vateron	3	62.02	90	80.7	47,2788 Fair	
	21 1603004	Mutharom	3	82.02	90	80.7	47.2788 Fair			22 1603013	Roial Wira Suria Sa	xta 2.89	88.25	50	75	51.4888 Fair	
	22 1603013	Rojali Wira Suria Sapt		86.25	50	75	51.4888 Fair			23 1603018	Chairul Amri	3.25	87.06	71	90.8	70.2054 Good	
	23 1603018	Cheirul Amri	3.25	87.06	70	90.8	70.2054 Good			24 1603020	Ahya Husaini	3.27	86.56	67.5	83.3	68.4738 Good	
	24 1603020	Ahya Husaini	3.27	88.58	67.5	83.3	68.4738 Good			25 1603023	Hendra Yudilman	3.38	87.69	144	90.2	87.5332 Good	
	25 1603023	Hendra Yudiinan	3.38	87.69	144	90.2	87.5332 Good			26 1603028	Wuhibban	3.42	89.96	84.6	95.52	85.0431 Good	
	26 1603028	Muhibban	3.42	89.96	84.6	95.52	85.0431 Good			27 1603030	Purna Irawan	3.21	85.5	72	90.7	67,2437 Good	
	27 1603030	Puma kawan	3.21	85.5	72	90.7	67.2437 Good			28 1603033	Rizal Fahmi	325	80	98	89.65	68.6235 Good	
	28 1603033	Rizal Fahmi	3.25	80	98	89.65	68.6235 Good			30. 1213133	Viel Hits Ward		10.10	69.0C	047	* here from the	
	~~ Kenonce	Voter f Bolen Wennes	2.45	00 XC	co oc	647	maner freed			<			_			>	

Figure 12. Testing the data of the Mamdani method

Figure 13. Testing the data of the Sugeno method

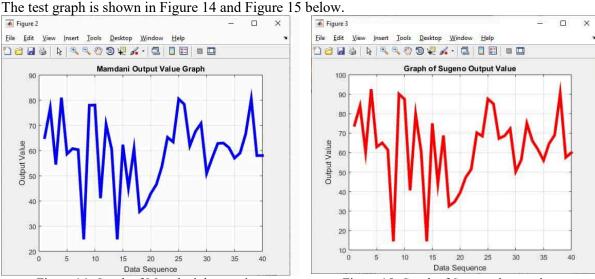


Figure 14. Graph of Mamdani data testing

Figure 15. Graph of Sugeno data testing

The combination of the two graphs of the methods used, both the Sugeno method and the Mamdani test method, can be seen in Figure 16.

Jurnal Inovasi Teknologi dan Rekayasa Vol. 5, No 2, July-December 2020, pp. 160-164

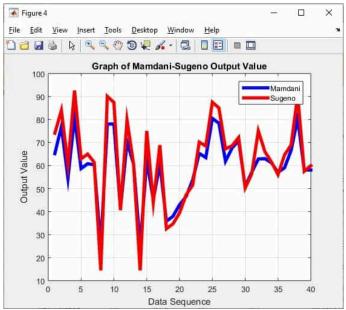


Figure 16. Graph of the Mamdani and Sugeno method student data testing

D. The rank of test output results

After all the data has been inputted, then sorting the data or ranking the data from the largest to the smallest output is carried out. The ranking results between the Mamdani and Sugeno methods have differences in order. This is because the system in the final decision has differences between methods. The ranking order of the Mamdani method can be shown in Figure 17 below.

		Test	ting Data for A	chievin	g Stud	fent Sele	ction Proc	ess	
ata processing		Student ID Nu	Imber Name of The Studer	t IPK/GPA	Final Pro	ect Extracurricul	ar Attendance O	utput Value Decis	Fuzzy
	1	1601024	Rizi Andika	3.71	87.04	156	95.6	81.0622 Good	A
Load Data	2	1604031	Wahyu Sah Putra	3.34	90.3	114	93.33	80.5116 Good	FIS Editor
	3	1603023	Hendra Yudilman	3.38	87.69	144	90.2	80.4983 Good	
Mamdani	4	1603028	Muhibban	3.42	89.96	84.6	95.52	78.4096 Good	MF Editor
	5	1601145	Huswatul Fitri	3.57	85.81	126	97.6	78.1045 Good	
Process	6	1601144	Ririn Sri Darlianti	3.35	86.07	192	93.65	78.0112 Good	Rule Editor
	7	1601006	Safrizal	3.25	79.58	195	92.85	76.9331 Good	Tuic Editor
Combined Graph	8	1603035	Yusuf Mulya Wiranta	3.49	86.45	58.85	94.7	70.7779 Good	
	9	1602010	Hilda Fajri Yusna	3.39	88.16	82	90.1	70.4655 Good	Surface
Rank	10	1603033	Rizal Fahmi	3.25	80	98	89.65	67.6252 Good	-
CINCIN	11	1604024	Nelli Maisarah	3.33	89	42	93.45	66.6505 Good	
E S	12	1603018	Chairul Amri	3.25	87.06	70	90.8	65.2886 Good	
Export	13	1601005	Lesi Fitria	3.38	86.75	73	95.34	65.1825 Good	
-	14	1603020	Ahya Husaini	3.27	86.56	67.5	83.3	63.4707 Good	
Reset	15	1604011	Anti Pitasari	3.15	87.48	60	85.34	63.0219 Good	
	16	1604009	Devendra Aulianur	3.35	85.48	84	95.3	62.8392 Good	
	17	1602028	Ulga Ahya	3.26	85.4	122	84.9	62,3653 Good	
	18	1603030	Purna Irawan	3.21	85.5	72	90.7	61.9330 Good	
	19	1604016	llyas	3.1	85.9	74	80.21	61.1955 Good	
	20	1601028	Putri Nursita	3.16	85.02	72	90	60.7903 Good	
	21	1602036	Muhammad Zulfa	3.23	84	83	90.2	60.7791 Good	
	22	1602018	Siti Raisah	3.09	85.8	65	80.4	60.5821 Good	
	23	1601030	Safriati	3.15	82.01	86	86.65	60.3667 Good	
	24	1604023	Muslim	3.08	85.3	84.6	87	59.0628 Fair	
	25	1601026	Teguh Pratama	3.3	82	63.3	93.8	58.6987 Fair	
	26	1604145	Sopiyana	3.07	86.1	40	82.7	58.0584 Fair	
	27	1604110	Nova Sari	2.95	86.92	64.3	70.76	58.0246 Fair	
	28	1604001	Riva Rosdiatama	2.94	86.73	49	64.9	57.0736 Fair	
	20	1004000	Cabri Maulana	0.00	00 00	00	70 C	CT DOON Cair	~

Figure 17. Ranking results using the Mamdani method

After sorting the output value from the values is shifted to the lowest, then an Export process is carried out for data storage. The steps for ranking and exporting data can also be done using the Sugeno method. From the tests, it found that the students with the highest score with the Mandani method are students on behalf of Student 04 with an output value of 81.06 in the "Good" category. While using the Sugeno method, the name of the student who was declared students also obtained "Best" on the same name, namely Student 04, with an output value of 92.63. The test results using the Sugeno method can be seen in Figure 18 below.

		Testing	g Data for A	chievin	g Stude	nt Selec	tion Pro	cess		
ta processing		Student ID Numbe	r Name of The Studen	t IPK/GPA	Final Project	Extracurricula	r Attendance (Output Value	Decisic	Fuzzy
	1	1601024	Rizi Andika	3.71	87.04	156	95.6	92.6279 Be	st	
Load Data	2	1604031	Wahyu Sah Putra	3.34	90.3	114	93.33	90.4000 Be	st	FIS Editor
	3	1601144	Ririn Sri Darlianti	3.35	86.07	192	93.65	90.0701 Be	st	
Sugeno ~	4	1603023	Hendra Yudilman	3.38	87.69	144	90.2	87.5332 Go	bod	MF Editor
	5	1601145	Huswatul Fitri	3.57	85.81	126	97.6	87.4300 Go	bod	
Process	6	1603028	Muhibban	3.42	89.96	84.6	95.52	85.0431 Go	bod	Rule Editor
	7	1601006	Safrizal	3.25	79.58	195	92.85	83.9655 Go	bod	The Editor
Combined Graph	8	1602010	Hilda Fajri Yusna	3.39	88.16	82	90.1	79.8005 Go	bod	Surface
	9	1604009	Devendra Aulianur	3.35	85.48	84	95.3	75.0628 Go	bod	Suriace
Rank	10	1602028	Ulqa Ahya	3.26	85.4	122	84.9	75.0458 Go	bod	
	11	1601005	Lesi Fitria	3.38	86.75	73	95.34	74.0819 Go	bod	
Diment	12	1603035	Yusuf Mulya Wiranta	3.49	86.45	58.85	94.7	72.1916 Go	bod	
Export	13	1603018	Chairul Amri	3.25	87.06	70	90.8	70.2054 Go	bod	
	14	1604024	Nelli Maisarah	3.33	89	42	93.45	68.9800 Go	bod	
Reset	15	1602036	Muhammad Zulfa	3.23	84	83	90.2	68.8769 Go	bod	
	16	1603033	Rizal Fahmi	3.25	80	98	89.65	68.6235 Go	bod	
	17	1603020	Ahya Husaini	3.27	86.56	67.5	83.3	68.4738 Go	bod	
	18	1603030	Purna Irawan	3.21	85.5	72	90.7	67.2437 Go	bod	
	19	1604011	Anti Pitasari	3.15	87.48	60	85.34	66.0734 Go	bod	
	20	1601028	Putri Nursita	3.16	85.02	72	90	64.9896 Go	bod	
	21	1604023	Muslim	3.08	85.3	84.6	87	64.6531 Go	bod	
	22	1601026	Teguh Pratama	3.3	82	63.3	93.8	62.9685 Go	bod	
	23	1604016	liyas	3.1	85.9	74	80.21	61.5873 Go	bod	
	24	1601030	Safriati	3.15	82.01	86	86.65	61.4107 Go	bod	
	25	1602018	Siti Raisah	3.09	85.8	65	80.4	60.4558 Go	bod	
	26	1601010	Rifky Jannatul Firdaus	3.19	79.3	79	90.03	60.3157 Go	bod	
	27	1604145	Sopiyana	3.07	86.1	40	82.7	59.9380 Fa	r	
	28	1604110	Nova Sari	2.95	86.92	64.3	70.76	57.5621 Fa	ir .	

Figure 18. Ranking results using the Sugeno method

E. Analysis of the Mamdani and Sugeno fuzzy methods

The results of the comparison between testing with the Mamdani and Sugeno fuzzy logic methods obtained a distinct difference in numbers, both testing with the Mamdani method or Sugeno method, both of these methods have been tested which produce new data, so users can use which way to use in the data testing process. In determining outstanding students at the South Aceh Polytechnic. The following tables and graphs illustrate the comparison results obtained after testing. For more details, see the following Tables and Graphs.

		Table 4.	Compariso	n of Tes	t Results			
				Testing	g Method			
No	Name of the student	-	Mamdani		Sugeno			
		Output Decision		Rank	Output	Decision	Rank.	
1	Student01	65.18	Fair	13	74.08	Good	11	
2	Student02	76.93	Good	7	83.97	Best	7	
3	Student03	54.46	Fair	30	60.32	Fair	26	
4	Student04	81.06	Best	1	92.63	Best	1	
5	Student05	58.70	Fair	25	62.91	Fair	22	
6	Student06	60.79	Fair	20	64.99	Fair	20	
7	Student07	60.37	Fair	23	61.41	Fair	24	
8	Student08	24.76	Poor	39	14.43	Poor	39	
9	Student09	78.01	Good	6	90.07	Best	3	
10	Student10	78.10	Good	5	87.43	Best	5	
11	Student11	41.10	Poor	36	40.60	Poor	35	
12	Student12	70.47	Good	9	79.80	Good	8	
13	Student13	60.58	Fair	22	60.46	Fair	25	
14	Student14	24.76	Poor	40	14.43	Poor	40	
15	Student15	62.37	Fair	17	75.05	Good	10	
16	Student16	45.18	Fair	34	44.03	Poor	34	
17	Student17	60.78	Fair	21	68.88	Fair	15	
18	Student18	35.82	Poor	38	32.55	Poor	38	
19	Student19	37.97	Poor	37	34.67	Poor	37	
20	Student20	42.97	Poor	35	39.42	Poor	36	
21	Student21	46.52	Fair	33	47.28	Fair	33	
22	Student22	53.73	Fair	31	51.49	Fair	31	
23	Student23	65.29	Fair	12	70.21	Good	13	
24	Student24	63.59	Fair	14	68.58	Fair	17	

Amsar Yunan & Muhammad Ali (Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic)

				Testing	g Method				
No	Name of the student]	Mamdani		Sugeno				
		Output	Decision	Rank	Output	Decision	Rank.		
Be	Student25	80.50	Best	3	87.53	Best	4		
26	Student26	78.60	Good	4	85.27	Best	6		
27	Student27	61.93	Fair	18	67.24	Fair	18		
28	Student28	67.63	Fair	10	68.62	Fair	16		
29	Student29	70.81	Good	8	72.24	Good	12		
30	Student30	50.94	Fair	32	50.30	Fair	32		
31	Student31	57.07	Fair	28	56.35	Fair	29		
32	Student32	62.84	Fair	16	75.06	Good	9		
33	Student33	63.02	Fair	15	66.07	Fair	19		
34	Student34	61.20	Fair	19	61.59	Fair	23		
35	Student35	57.03	Fair	29	56.08	Fair	30		
36	Student36	59.27	Fair	24	64.75	Fair	21		
37	Student37	66.65	Fair	11	68.98	Fair	14		
38	Student38	80.51	Best	2	90.40	Best	2		
39	Student39	58.02	Fair	27	57.56	Fair	28		
40	Student40	58.06	Fair	26	59.94	Fair	27		

From the test results, it can be seen that the comparison of the two methods used, the error rate process of these two methods, is obtained from the calculation of the average results of each input variable. This intermediate result is used as the initial test value before the testing process is carried out using the Mamdani and Sugeno fuzzy logic methods. Each input variable with the test results of the two ways in making student achievers decisions, the error rate amount can use equation (4).

$$MPE = \frac{\sum_{r=1}^{n} \frac{(Y_{r} - \hat{Y}_{r})}{Y_{r}} \times 100\%}{n}$$
(4)

Using the MPE formula, the truth value can be solved using the mean percent error value / also known as the Mean Percentage Error (MPE), as in Table 5 below:

No	Name of	Initial	l	Mamdani	i		Sugeno	
INU	the student	value	Output	Error	MPE	Output	Error	MPE
1	Student01	64.62	65.18	0.59	0.91	74.08	9.46	12.78
2	Student02	92.67	76.93	15.74	16.98	83.97	8.70	10.36
3	Student03	62.88	54.46	8.42	13.39	60.32	2.56	4.24
4	Student04	85.59	81.06	4.53	5.29	92.63	7.04	7.60
5	Student05	60.60	58.70	1.90	3.14	62.91	2.31	3.66
6	Student06	62.55	60.79	1.75	2.81	64.99	2.44	3.76
7	Student07	64.45	60.37	4.09	6.34	61.41	3.04	4.95
8	Student08	52.43	24.76	27.67	52.78	14.43	38.00	263.41
9	Student09	93.77	78.01	15.76	16.80	90.07	3.70	4.11
10	Student10	78.25	78.10	0.14	0.18	87.43	9.19	10.51
11	Student11	57.37	41.10	16.26	28.35	40.60	16.77	41.31
12	Student12	65.91	70.47	4.55	6.90	79.80	13.89	17.40
13	Student13	58.57	60.58	2.01	3.43	60.46	1.88	3.12
14	Student14	54.38	24.76	29.62	54.47	14.43	39.95	276.93
15	Student15	73.89	62.37	11.52	15.60	75.05	1.16	1.54
16	Student16	55.62	45.18	10.43	18.76	44.03	11.58	26.30
17	Student17	65.11	60.78	4.33	6.65	68.88	3.77	5.47
18	Student18	55.72	35.82	19.89	35.70	32.55	23.16	71.15
19	Student19	54.62	37.97	16.65	30.49	34.67	19.95	57.54
20	Student20	62.48	42.97	19.51	31.23	39.42	23.06	58.50
21	Student21	63.93	46.52	17.41	27.24	47.28	16.65	35.22
22	Student22	53.54	53.73	0.19	0.35	51.49	2.05	3.98

Table 5. Calculation results of the Mean Percentage Error level

Amsar Yunan & Muhammad Ali (Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic)

No	Name of	Initial]	Mamdani	i		Sugeno	
INO	the student	value	Output	Error	MPE	Output	Error	MPE
23	Student23	62.78	65.29	2.51	4.00	70.21	7.43	10.58
24	Student24	60.16	63.59	3.43	5.70	68.58	8.42	12.28
25	Student25	81.32	80.50	0.82	1.01	87.53	6.22	7.10
26	Student26	68.38	78.60	10.23	14.96	85.27	16.90	19.81
27	Student27	62.85	61.93	0.92	1.46	67.24	4.39	6.53
28	Student28	67.73	67.63	0.10	0.15	68.62	0.90	1.31
29	Student29	60.87	70.81	9.94	16.33	72.24	11.36	15.73
30	Student30	67.24	50.94	16.29	24.23	50.30	16.93	33.66
31	Student31	50.89	57.07	6.18	12.14	56.35	5.46	9.68
32	Student32	67.03	62.84	4.19	6.26	75.06	8.03	10.70
33	Student33	58.99	63.02	4.03	6.83	66.07	7.08	10.72
34	Student34	60.80	61.20	0.39	0.64	61.59	0.78	1.27
35	Student35	63.33	57.03	6.30	9.94	56.08	7.25	12.93
36	Student36	65.00	59.27	5.73	8.81	64.75	0.24	0.37
37	Student37	56.95	66.65	9.71	17.05	68.98	12.04	17.45
38	Student38	75.24	80.51	5.27	7.00	90.40	15.16	16.77
39	Student39	56.23	58.02	1.79	3.18	57.56	1.33	2.31
40	Student40	52.97	58.06	5.09	9.61	59.94	6.97	11.63
Total	Error percentage			527.09			1124.66	
Avera	ge Percentage of er	rors		13.18			28.12	
Data c	orrectness level			86.82 %			71.88 %	

From Table 5 above, from the calculations that have been done using the formula to find the actual value by calculating the mean percent error value or also known as the Mean Percentage Error (MPE), the average percentage error rate results from calculations using both methods. The fuzzy Mamdani logic testing method obtained a total of 527.09 divided by the amount of data, namely 40 parts. The results of this division obtained an average error rate of 13.18%. While the truth level from these calculations' effects is 100% minus 13.18%, then the truth level is 86.82%. While the Sugeno fuzzy logic test method obtained a total of 1124.66 divided by the amount of data, namely 40 parts, this division's results got an average error rate of 28.12%. while the level of truth from the effects of these calculations is 100% minus 28.12%, then the truth level is 71.88%

V. Conclusion

Based on the results of research on the study of the implementation of the decision-making process for the selection of outstanding students at the South Aceh Polytechnic using the Mamdani and Sugeno fuzzy logic method, it can be concluded that:

- 1. The stages in selecting outstanding students begin with determining the fuzzy set, determining the application of the implication function, compiling the rules used in the fuzzification calculation process, determining defuzzification to get a firm value of the decision results, ranking methods, and selecting a list of names that are included in the highest score as outstanding students.
- 2. The testing process can be presented in a Graphic User Interface (GUI) display in Matlab 2015a so that the user or admin can input data into the system that has been built for the output process.
- 3. A comparison of the correct level value in the study, with 40 students obtained a different level of truth. For the Fuzzy Mamdani logic method, the right level is 86.82%, while the application of Fuzzy Sugeno logic gets a truth level of 71.88%.

References

- [1] Muna Erawati, "Prestasi Akademik Siswa Dalam Kaitannya Dengan Motivasi Akademik, Persepsi Terhadap Dukungan Akademik Dan Peran Orang Tua," Universitas Gajah Mada, 2015.
- [2] R. A. Purba, "Memprediksi Prestasi Mahasiswa Politeknik Unggul LP3M dengan Menggunakan

Jaringan Saraf Tiruan dan Fuzzy," Semin. Nas. Teknol. Inf. dan Multimed., pp. 1-6, 2018.

- [3] M. Irfan, L. P. Ayuningtias, and J. Jumadi, "Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani (Studi Kasus : Prediksi Jumlah Pendaftar Mahasiswa Baru)," J. Tek. Inform., vol. 10, no. 1, pp. 9–16, 2018, doi: 10.15408/jti.v10i1.6810.
- [4] D. L. Rahakbauw, "Penerapan Logika Fuzzy Metode Sugeno Berdasarkan Data Persediaan Dan Jumlah Permintaan (Studi Kasus : Pabrik Roti Sarinda Ambon) Application of Fuzzy Logic Method Sugeno To Determine the Total Production of Bread," vol. 9, pp. 121–134, 2015.
- [5] E. Mahargia, D. Anggraeni P, R. Wandiro S, and Y. Mahzar, "Penerapan Logika Fuzzy Metode Sugeno untuk Sistem Pendukung Keputusan Prakiraan Cuaca," Universitas Brawijaya, 2013.
- [6] A. Wantoro and A. T. Priandika, "Komparasi Perhitungan Pemilihan Mahasiswa Terbaik Menggunakan Metode Statistik Klasik Dengan Logika Fuzzy (Tsukamoto Dan Mamdani," Semin. Nas. Teknol. Inf., pp. 25–32, 2017.
- [7] V. D. Kouloumpis, V. S. Kouikoglou, and Y. A. Phillis, "Sustainability Assessment of Nations and Related Decision Making Using Fuzzy Logic," *IEEE Syst. J.*, vol. 2, no. 2, pp. 224–236, 2008, DOI: 10.1109/JSYST.2008.925256.
- [8] Sri Kusumadewi, Aplikasi Logika Fuzzy untuk Pendukung Keputusan2. Yogyakarta: Graha Ilmu, 2013.
- [9] Ferdinandus and I. luvi I. Astutik, "Sistem pendukung keputusan untuk membantu siswa sma kelas xii dalam menentukan jurusan di perguruan tinggi dengan menggunakan logika fuzzy metode mamdani," Sist. Nas. "Inovasi dalam Desain dan Teknol., pp. 158–168, 2015.
- [10] M. Stetnicha, B. De Baets, and L. Noskova, "Arithmetic fuzzy models," *IEEE Trans. Fuzzy Syst.*, vol. 18, no. 6, pp. 1058–1069, 2010, DOI: 10.1109/TFUZZ.2010.2062522.
- [11] Amsar, R. Munadi, and R. Adriman, "Seleksi Beasiswa Untuk Perguruan Tinggi Berdasarkan Pendekatan Keputusan Berkeadilan Dengan Fuzzy Mamdani," *J. Inotera*, vol. 2, no. 2, pp. 1–8, 2017.
- [12] Fajar Solikin, "Aplikasi Logika Fuzzy dalam Optimisasi Produksi Barang Menggunakan Metode Mamdani dan Metode Sugeno," Yogyakarta, 2011.
- [13] M. D. Irawan, "Sistem Pendukung Keputusan Menentukan Matakuliah Pilihan pada Kurikulum Berbasis KKNI Menggunakan Metode Fuzzy Sugeno," vol. 13, no. 1, pp. 27–35, 2017.
- [14] Kusrini, Pengenalan Sistem Informasi. Yogyakarta: Andi, 2007.
- [15] H. Iqbal, *Pokok-pokok Materi Statistika 2 (Statistik Inferensif)*, 2nd ed. Jakarta: PT.Bumi Aksara, 2010.
- [16] S. Nurhayati and I. Immanudin, "Penerapan Logika Fuzzy Mamdani untuk Prediksi Pengadaan Peralatan Rumah Tangga Rumah Sakit Application of Fuzzy Mamdani Logic for Procurement Predictions Hospital Household Appliances," vol. 8, no. 28, pp. 81–87, 2019, doi: 10.34010/komputika.v8i2.2254.